What is...the symmetric algebra?

Or: Polynomials in vector spaces.

Let us look at polynomials

\cdot	$b X_{1}$	
$a X_{1}$	$a b X_{1} X_{1}$	$a d X_{1} X_{2}$
$+_{1}$		
$c X_{2}$	$b c X_{2} X_{1}$	$c d X_{2} X_{2}$

$$
\operatorname{perm}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d+b c \quad \operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

$$
\begin{gather*}
a b X_{1}^{2}+c d X_{2}^{2} \tag{0}\\
(a d+b c) X_{1} X_{2}
\end{gather*}
$$

$(a d-b c) X_{1} X_{2}$
Many similarities, but two crucial differences:

- Diagonals survive vs. diagonals are annihilated
- Commuting variables vs. anticommuting variables

The permanent

How to get

$$
\operatorname{perm}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a f h+a e i+b f g+b d i+c e g+c d h ?
$$

Multiply polynomials:

$$
\begin{gathered}
\left(a X_{1}+d X_{2}+g X_{3}\right)\left(b X_{1}+e X_{2}+h X_{3}\right)\left(c X_{1}+f X_{2}+i X_{3}\right)= \\
(a f h+a e i+b f g+b d i+c e g+c d h) X_{1} X_{2} X_{3} \\
+a \text { lot of other summands }
\end{gathered}
$$

This was a calculation in degree 3 of the symmetric algebra $\operatorname{Sym}\left(X_{1}, X_{2}, X_{3}\right)=\mathbb{R}\left\langle X_{1}, X_{2}, X_{3}\right\rangle /\left(X_{i} X_{j}=X_{j} X_{i}\right)$.

Lets count dimensions

Write $\operatorname{Sym}^{k}\left(X_{1}, X_{2}, X_{3}\right)$ for polynomials of degree k in $\operatorname{Sym}\left(X_{1}, X_{2}, X_{3}\right)$.

- $\operatorname{Sym}^{0}\left(X_{1}, X_{2}, X_{3}\right)$ is spanned by $\{1\}$
$\operatorname{dim} \operatorname{Sym}^{0}\left(X_{1}, X_{2}, X_{3}\right)=\binom{3}{0}=1$
- $\operatorname{Sym}^{1}\left(X_{1}, X_{2}, X_{3}\right)$ is spanned by $\left\{X_{1}, X_{2}, X_{3}\right\}$
$\operatorname{dim} \operatorname{Sym}^{1}\left(X_{1}, X_{2}, X_{3}\right)=\binom{3+1-1}{1}=3$
- $\operatorname{Sym}^{2}\left(X_{1}, X_{2}, X_{3}\right)$ is spanned by $\left\{X_{1}^{2}, X_{2}^{2}, X_{3}^{2}, X_{1} X_{2}, X_{1} X_{3}, X_{2} X_{3}\right\}$ $\operatorname{dim} \operatorname{Sym}^{2}\left(X_{1}, X_{2}, X_{3}\right)=\binom{3+2-1}{2}=6$
- $\operatorname{Sym}^{3}\left(X_{1}, X_{2}, X_{3}\right)$ is spanned by $\left\{X_{1}^{3}, X_{2}^{3}, X_{3}^{3}, X_{1}^{2} x_{2}, X_{1}^{2} x_{3}, x_{1} X_{2}^{2}, X_{2}^{2} x_{3}, x_{1} x_{3}^{2}, x_{2} x_{3}^{2}, x_{1} x_{2} x_{3}\right\}$ $\operatorname{dim} \operatorname{Sym}^{3}\left(X_{1}, X_{2}, X_{3}\right)=\binom{3+3-1}{3}=10$
- All others are $\binom{3+k-1}{k}$, and the total dimension is ∞ $\operatorname{dim} \operatorname{Sym}\left(X_{1}, X_{2}, X_{3}\right)=\infty$
$\operatorname{dim} \operatorname{Ext}^{k}\left(X_{1}, \ldots, X_{n}\right)=\binom{n}{k}$
$\operatorname{dim} \operatorname{Sym}^{k}\left(X_{1}, \ldots, X_{n}\right)=\binom{n+k-1}{k}$ $\operatorname{dim} \operatorname{Sym}\left(X_{1}, \ldots, X_{n}\right)=\infty$

For completeness: A formal definition.

The exterior algebra $\operatorname{Sym}(V)$ of a vector space V over a field (say not of characteristic 2) is defined as the quotient algebra of the tensor algebra $\mathrm{T}(V)$ by the two-sided ideal / generated by the relation

$$
X \otimes Y=Y \otimes X
$$

- Very often one writes e.g. $X \cdot Y$ or $X Y$ for the image of $X \otimes Y$ under the canonical surjection $\mathrm{T}(V) \rightarrow \operatorname{Sym}(V)$
- Note that $X \cdot X \neq 0$ in $\operatorname{Sym}(V)$
- If we choose a basis $\left\{X_{i}\right\}$ of V, then $\operatorname{Sym}(V)$ is the polynomial ring in commuting variables $\left\{X_{i}\right\}$

Some combinatorics in this story

Take the symmetric group and act on $\mathbb{R}\left[X_{1}, X_{2}, X_{3}\right]$ by permuting the variables. Symmetric polynomials? These are fixed by permutation, e.g.

degree	polynomials	symmetric basis
0	1	1
1	$X_{1}+X_{2}+X_{3}$	X_{1}, X_{2}, X_{3}
2	$X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}, X_{1}^{2}+X_{2}^{2}+X_{3}^{2}$	$X_{1}^{2}, X_{2}^{2}, X_{3}^{2}, X_{1} X_{2}, X_{1} X_{3}, X_{2} X_{3}$

These are symmetric polynomials are also called symmetric tensors and they live inside the symmetric algebra (but honestly, so they are not spanning it).

Thank you for your attention!

I hope that was of some help.

