What is...a matrix?

Or: Incarnations of the same beast.

Seriously, what is a matrix (visually)?

Answer 1. A rectangle of numbers e.g.

$$
(0), \quad\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), \quad\left(\begin{array}{lll}
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right), \quad\left(\begin{array}{lll}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18
\end{array}\right)
$$

Answer 2. A staircase 3d function, e.g.

$$
\leadsto \leadsto\left(\begin{array}{ccccc}
0.002589 & 0.0107788 & 0.0241466 & 0.0107788 & 0.002589 \\
0.0107788 & 0.0448755 & 0.10053 & 0.0448755 & 0.0107788 \\
0.0241466 & 0.10053 & 0.225206 & 0.10053 & 0.0241466 \\
0.0107788 & 0.0448755 & 0.15053 & 0.0448755 & 0.0107788 \\
0.002589 & 0.0107788 & 0.0241466 & 0.0107788 & 0.002589
\end{array}\right)
$$

Seriously, what is a matrix (via actions)?
Answer 3. A transformation of space, e.g.

Answer 4. A transformation of shapes, e.g.
$\sum m\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \sum m\left(\begin{array}{cc}1 / 2 & -1 \\ 1 & 0\end{array}\right)$

Seriously, what is a matrix (via actions)?

Answer 5. An algebraic object allowing certain operations, e.g....

- ...multiplication by scalars.

$$
2 \cdot\left(\begin{array}{lll}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18
\end{array}\right)=\left(\begin{array}{lll}
20 & 22 & 24 \\
26 & 28 & 30 \\
32 & 34 & 36
\end{array}\right)
$$

- ...addition.

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)+\left(\begin{array}{lll}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18
\end{array}\right)=\left(\begin{array}{lll}
11 & 13 & 15 \\
17 & 19 & 21 \\
23 & 25 & 27
\end{array}\right)
$$

- ...transposition (mirroring).

$$
\operatorname{Transpose}\left(\left(\begin{array}{lll}
10 & 11 & 12 \\
13 & 14 \\
16 & 15 \\
16 & 17 & 18
\end{array}\right)\right)=\left(\begin{array}{lll}
10 & 13 & 16 \\
11 & 14 & 16 \\
12 & 15 & 18
\end{array}\right)
$$

- ...multiplication.

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)\left(\begin{array}{lll}
10 & 11 & 12 \\
13 & 14 & 15 \\
16 & 17 & 18
\end{array}\right)=\left(\begin{array}{ccc}
84 & 90 & 96 \\
201 & 216 & 231 \\
318 & 342 & 366
\end{array}\right)
$$

For completeness: A formal definition.

A matrix M is a rectangular array of numbers, or other mathematical objects for which operations such as addition and multiplication are defined.

The individual entries of $M=\left(m_{i j}\right)_{i=1, \ldots, m}^{j=1, \ldots, n}$ are arranged by

	1	2	\cdots	n
1	m_{11}	m_{12}	\cdots	$m_{1 n}$
2	m_{21}	m_{22}	\cdots	$m_{2 n}$
\vdots	\vdots	\vdots	\ddots	\vdots
m	$m_{m 1}$	$m_{m 2}$	\cdots	$m_{m n}$

Matrices can be multiplied by scalars and added (if they are of the same size) together componentwise, transposed and their is a rule for multiplication. (And many more cool things!)

What is this strange matrix multiplication?

Matrix multiplication is constructed such that shape-action compose:

$$
\begin{array}{ll}
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)^{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) & \left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)^{3}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{array}
$$

Thank you for your attention!

I hope that was of some help.

