> What is...the exterior algebra?

Or: Anticommuting polynomials.

Commute vs. anticommute

The polynomial algebra

$$
\begin{gathered}
\mathbb{R}\left[X_{1}, X_{2}, X_{3}\right] \\
=\mathbb{R}\left\langle X_{1}, X_{2}, X_{3}\right\rangle /\left(X_{i} X_{j}=X_{j} X_{i}\right)
\end{gathered}
$$

Variables commute

The exterior algebra

$$
\begin{gathered}
\operatorname{Ext}\left(X_{1}, X_{2}, X_{3}\right) \\
=\mathbb{R}\left\langle X_{1}, X_{2}, X_{3}\right\rangle /\left(X_{i} X_{j}=-X_{j} X_{i}\right)
\end{gathered}
$$

Variables anticommute

Let us multiply two polynomials:

\cdot	$b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}$		
$a_{1} X_{1}$	$a_{1} b_{1} X_{1} X_{1}$	$a_{1} b_{2} X_{1} X_{2}$	$a_{1} b_{3} X_{1} X_{3}$
$+{ }_{+} X_{2}$	$a_{2} b_{1} X_{2} X_{1}$	$a_{2} b_{2} X_{2} X_{2}$	$a_{2} b_{3} X_{2} X_{3}$
$a_{3} X_{3}$	$a_{3} b_{1} X_{3} X_{1}$	$a_{3} b_{2} X_{3} X_{2}$	$a_{3} b_{3} X_{3} X_{3}$

$$
\begin{gather*}
a_{1} b_{1} X_{1}^{2}+a_{2} b_{2} X_{2}^{2}+a_{3} b_{3} X_{3}^{2} \tag{0}\\
+\left(a_{1} b_{2}+a_{2} b_{1}\right) X_{1} X_{2} \\
+\left(a_{1} b_{3}+a_{3} b_{1}\right) X_{1} X_{3} \\
+\left(a_{2} b_{3}+a_{3} b_{2}\right) X_{2} X_{3}
\end{gather*}
$$

$$
\begin{aligned}
& +\left(a_{1} b_{2}-a_{2} b_{1}\right) X_{1} X_{2} \\
& +\left(a_{1} b_{3}-a_{3} b_{1}\right) X_{1} X_{3} \\
& +\left(a_{2} b_{3}-a_{3} b_{2}\right) X_{2} X_{3}
\end{aligned}
$$

Higher dimensional vectors

These are the same coefficients as for the cross product:

$$
\begin{aligned}
& \left(a_{1} b_{2}-a_{2} b_{1}\right) X_{1} X_{2} \\
+ & \left(a_{1} b_{3}-a_{3} b_{1}\right) X_{1} X_{3} \\
+ & \left(a_{2} b_{3}-a_{3} b_{2}\right) X_{2} X_{3}
\end{aligned} \quad\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{1} b_{2}-a_{2} b_{1} \\
a_{1} b_{3}-a_{3} b_{1} \\
a_{2} b_{3}-a_{3} b_{2}
\end{array}\right)
$$

However, the first is more like a 2-dimensional object:

Lets count dimensions

Write $\operatorname{Ext}^{k}\left(X_{1}, X_{2}, X_{3}\right)$ for polynomials of degree k in $\operatorname{Ext}\left(X_{1}, X_{2}, X_{3}\right)$.

- $\operatorname{Ext}^{0}\left(X_{1}, X_{2}, X_{3}\right)$ is spanned by $\{1\}$ $\operatorname{dim} \operatorname{Ext}^{0}\left(X_{1}, X_{2}, X_{3}\right)=\binom{3}{0}=1$
- $\operatorname{Ext}^{1}\left(X_{1}, X_{2}, X_{3}\right)$ is spanned by $\left\{X_{1}, X_{2}, X_{3}\right\}$ $\operatorname{dim} \operatorname{Ext}^{1}\left(X_{1}, X_{2}, X_{3}\right)=\binom{3}{1}=3$
- $\operatorname{Ext}^{2}\left(X_{1}, X_{2}, X_{3}\right)$ is spanned by $\left\{X_{1} X_{2}, X_{1} X_{3}, X_{2} X_{3}\right\}$ $\operatorname{dim} \operatorname{Ext}^{2}\left(X_{1}, X_{2}, X_{3}\right)=\binom{3}{2}=3$
- $\operatorname{Ext}^{3}\left(X_{1}, X_{2}, X_{3}\right)$ is spanned by $\left\{X_{1} X_{2} X_{3}\right\}$ $\operatorname{dim} \operatorname{Ext}^{3}\left(X_{1}, X_{2}, X_{3}\right)=\binom{3}{3}=1$
- All others are zero and the total dimension is $2^{3}=8$ $\operatorname{dim} \operatorname{Ext}\left(X_{1}, X_{2}, X_{3}\right)=2^{n}$

In general $\operatorname{dim} \operatorname{Ext}^{k}\left(X_{1}, \ldots, X_{n}\right)=\binom{n}{k}$ and $\operatorname{dim} \operatorname{Ext}\left(X_{1}, \ldots, X_{n}\right)=2^{n}$

For completeness: A formal definition.

The exterior algebra $\operatorname{Ext}(V)$ of a vector space V over a field (say not of characteristic 2) is defined as the quotient algebra of the tensor algebra $\mathrm{T}(V)$ by the two-sided ideal / generated by the relation

$$
X \otimes Y=-Y \otimes X
$$

- Very often one writes e.g. $X \wedge Y$ for the image of $X \otimes Y$ under the canonical surjection $\mathrm{T}(V) \rightarrow \operatorname{Ext}(V)$
- Note that $X \wedge Y=-Y \wedge X$ implies $X \wedge X=-X \wedge X$. Thus, $X \wedge X=0$ in $\operatorname{Ext}(V)$
- If we choose a basis $\left\{X_{i}\right\}$ of V, then $\operatorname{Ext}(V)$ is the polynomial ring in non-commuting variables $\left\{X_{i}\right\}$

Here is the determinant

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

.	$b X_{1}$		$+\quad d X_{2}$
$a X_{1}$	$a b X_{1} X_{1}$	$a d X_{1} X_{2}$	
$c X_{2}$	$b c X_{2} X_{1}$	$c d X_{2} X_{2}$	

0 $(a d-b c) X_{1} X_{2}$

Using \wedge :

$$
\begin{gathered}
\binom{a}{c} \wedge\binom{b}{d}=\left(a\binom{1}{0}+c\binom{0}{1}\right) \wedge\left(b\binom{1}{0}+d\binom{0}{1}\right) \\
=a b\binom{1}{0} \wedge\binom{1}{0}+a d\binom{1}{0} \wedge\binom{0}{1}+b c\binom{0}{1} \wedge\binom{1}{0}+c d\binom{0}{1} \wedge\binom{0}{1} \\
=(a d-b c)\binom{1}{0} \wedge\binom{0}{1}=(a d-b c) X_{1} \wedge X_{2}
\end{gathered}
$$

det is the scalar in front of $X_{1} \wedge \ldots \wedge X_{n} \in \operatorname{Ext}\left(X_{1}, \ldots, X_{n}\right)$

Thank you for your attention!

I hope that was of some help.

