What are...tensor products \otimes ?

Or: How to multiply vector spaces and matrices.

My wish list for multiplying vector spaces.

- I want $V \otimes W \cong W \otimes V$.
- I want $(V \otimes W) \otimes X \cong V \otimes(W \otimes X)$.
- I want $\operatorname{dim}(V \otimes W)=\operatorname{dim}(V) \operatorname{dim}(W)$.

Does this remind you of numbers?

How can we multiply vectors externally?

$$
\mathbb{R}^{3} \otimes \mathbb{R}^{2} \ni\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \otimes\binom{4}{5}=\begin{array}{c|cc}
\otimes & 4 & 5 \\
\hline 1 & 1 \cdot 4 & 1 \cdot 5 \\
2 & 2 \cdot 4 & 2 \cdot 5 \\
3 & 3 \cdot 4 & 3 \cdot 5
\end{array}=\left(\begin{array}{c}
1 \cdot 4 \\
1 \cdot 5 \\
\hline 2 \cdot 4 \\
2 \cdot 5 \\
\hline 3 \cdot 4 \\
3 \cdot 5
\end{array}\right) \quad \leftrightarrow\left(\begin{array}{c}
4 \\
5 \\
8 \\
10 \\
12 \\
15
\end{array}\right) \in \mathbb{R}^{6}
$$

Vector spaces V and W have bases $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{m}\right\}$. The space $V \otimes W$ has bases $\left\{v_{1} w_{1}, \ldots, v_{1} w_{m}, \ldots, v_{n} w_{m}\right\}$.

Two bases multiply to a new one:

$$
\left\{\begin{array}{c|ccc|cc}
\otimes & 1 & 0 & \otimes & 0 & 1 \\
\hline 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\otimes & 1 & 0 & \otimes & 0 & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right\} \quad \leftrightarrow \mu\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\} \otimes\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

Where my wishes granted?

$$
\begin{aligned}
& V \otimes W \cong W \otimes V \text { ? Yep: } \\
& \left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \otimes\binom{4}{5}=\begin{array}{c|cc}
\otimes & 4 & 5 \\
\hline 1 & 4 & 5 \\
2 & 8 & 10 \\
3 & 12 & 15
\end{array} \quad=" \begin{array}{l|lll}
\otimes & 1 & 2 & 3 \\
\hline 4 & 4 & 8 & 12 \\
5 & 5 & 10 & 15
\end{array}=\binom{4}{5} \otimes\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
\end{aligned}
$$

$(V \otimes W) \otimes X \cong V \otimes(W \otimes X)$? Yep:

$$
\left(\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \otimes\binom{4}{5}\right) \otimes(6)=\left(\begin{array}{l}
(1 \cdot 4) \cdot 6 \\
(\cdot 5) \cdot 6 \\
(2 \cdot 4) \cdot 6 \\
(2 \cdot 5) \cdot 6 \\
\hline(3 \cdot 4) \cdot 6 \\
(3 \cdot 5) \cdot 6
\end{array}\right)="=\left(\begin{array}{l}
1 \cdot(4 \cdot 6) \\
1 \cdot(5 \cdot 6) \\
2 \cdot(4 \cdot 6) \\
2 \cdot(5 \cdot 6) \\
\hline \cdot(4 \cdot 6) \\
3 \cdot(5 \cdot 6)
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \otimes\left(\binom{4}{5} \otimes(6)\right)
$$

$\operatorname{dim}(V \otimes W)=\operatorname{dim}(V) \operatorname{dim}(W)$? Yep:

$$
\#\left\{\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right\}=6=3 \cdot 2=\#\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}+\#\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

For completeness: A formal definition.

If V and W are vector spaces with fixed standard bases $\left\{e_{i}\right\},\left\{e_{j}\right\}$, then $V \otimes W$ is the vector space defined by demanding that

$$
e_{1} \otimes e_{1}=e_{11}=\left(\begin{array}{lll}
1 & \cdots & 0 \\
\vdots & \ldots & \vdots \\
0 & \ldots & 0
\end{array}\right), \ldots, e_{n} \otimes e_{m}=e_{m m}=\left(\begin{array}{lll}
0 & . & 0 \\
\vdots & \ldots & \vdots \\
0 & \ldots & 1
\end{array}\right) \text { is the new basis of } V \otimes W \text {. }
$$

And what about matrices?

$$
\begin{gathered}
\left(\begin{array}{l}
\left.\mathbb{R}^{2} \xrightarrow{\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)} \mathbb{R}^{2}\right) \otimes\left(\mathbb{R}^{3} \xrightarrow{\left(\begin{array}{ll}
5 & 6 \\
7
\end{array}\right)} \mathbb{R}^{1}\right) \\
= \\
\left.\mathbb{R}^{6} \xrightarrow{\left(\begin{array}{cc}
5 & 10 \\
15 & 29
\end{array}\right.} \begin{array}{ccc|cc}
6 & 12 & 7 & 14 \\
18 & 24 & 21 & 28
\end{array}\right) \\
\mathbb{R}^{2}
\end{array}\right.
\end{gathered}
$$

They are intertwined in a multiplicative way.

Thank you for your attention!

I hope that was of some help.

