What is...a quotient vector space?

Or: Identifying information.

The idea of quotients.

V is a type $X Y Z$ object, W some subobject. Then a quotient V / W should satisfy:

- V / W should be of type XYZ
- The information in W should be trivial in V / W
- Information in V / W is equal if and only if it differs by W

A quotient identifies information

In some sense things are the same:

Linear identification along codim 1

What happens if we collapse a line $W=\mathbb{R}(1,1)$ in $V=\mathbb{R}^{2}$ to a point?

The lines parallel to W are the points of $V / W, \operatorname{dim} V / W=1$

Linear identification along codim 2

What happens if we collapse a line $W=\mathbb{R}(1,1,1)$ in $V=\mathbb{R}^{3}$ to a point?

The lines parallel to W are the points of $V / W, \operatorname{dim} V / W=2$

For completeness: A formal definition.

Let V be a vector space, W be a linear subspace. Define V / W by:

- Define an equivalence relation \sim on V by stating that $v \sim w$ if $v-w \in W$
- $V / W=V / \sim$
- Scalar multiplication $\lambda[v]=[\lambda v]$ and addition $[v]+[w]=[v+w]$

Important facts about V / W :

- V / W is a vector space and $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$ be careful with infinities
- [w] for $w \in W$ is the zero in V / W
- $[v]=[w]$ if and only if $v-w \in W$

What about shapes under quotients?

A square becomes a triangle (in some sense)

Thank you for your attention!

I hope that was of some help.

