What is...the dual vector spaces?

Or: Two flipped sides.

My wish list for duality (in mathematics and beyond).

V is some object, V^* its dual. The duality _* should satisfy:

▶ I want $(V^*)^* \cong V$

- ▶ I want that an operation V o W turns into an operation $W^* o V^*$
- \blacktriangleright I want that operations $V \to W^*$ correspond to operations $W^* \to V$

Duality in mathematics is not a theorem, but a "principle" (Atiyah) Everything that is true about V has a dual statement which is true about V^*

Two points meet in one line, two lines meet in one point:

Strictly speaking this needs projective geometry...

Let us look at linear maps

Consider the usual inner product on \mathbb{R}^3 :

 $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}_1 \mathbf{w}_1 + \mathbf{v}_2 \mathbf{w}_2 + \mathbf{v}_3 \mathbf{w}_3$

Another way of writing this:

$$\begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = v_1 w_1 + v_2 w_2 + v_3 w_3$$

 $\langle v, _ \rangle \colon \mathbb{R}^3 \to \mathbb{R}, \quad w \mapsto \langle v, w \rangle \longleftrightarrow (\langle v, (1,0,0) \rangle \langle v, (0,1,0) \rangle \langle v, (0,0,1) \rangle) = \begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$

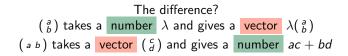
Each vector $v \in \mathbb{R}^3$ corresponds to a linear map $\langle v, _- \rangle \colon \mathbb{R}^3 \to \mathbb{R}$ and vice versa

The transpose space

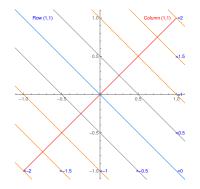
 \mathbb{R}^2 as column vectors

 \mathbb{R}^2 as row vectors

 $\mathbb{R}^2 = \left\{ \left(\begin{smallmatrix} a \\ b \end{smallmatrix}\right) \colon \mathbb{R} \to \mathbb{R}^2 \mid a, b \in \mathbb{R} \right\} \qquad (\mathbb{R}^2)^* = \left\{ \left(\begin{smallmatrix} a & b \end{smallmatrix}\right) \colon \mathbb{R}^2 \to \mathbb{R} \mid a, b \in \mathbb{R} \right\}$



Example (a = b = 1). One of them is one-dimensional, the other kind of as well



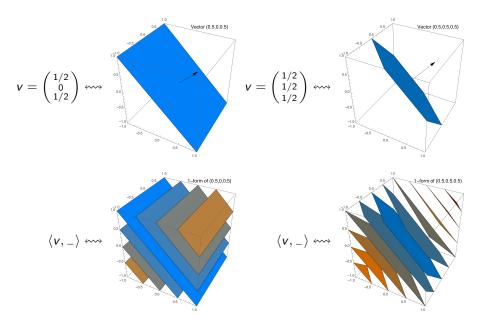
The dual vector space is $V^* = \operatorname{End}_{\mathcal{K}}(V, \mathbb{K})$

Important facts for V finite-dimensional be careful with infinities:

▶ Let $B = \{v_1, ..., v_n\}$ be a basis of vector space V. The dual vector space $V^* = \text{End}_K(V, \mathbb{K})$ has basis $B = \{v_1^*, ..., v_n^*\}$ given by linear maps

$$v_i^* \colon V \to \mathbb{K}, \quad v_i^*(v_j) = egin{cases} 1 & ext{if } i=j \ 0 & ext{else} \end{cases}$$

(V*)* ≅ V canonically by v**(φ) = φ(v)
f: V → W gives f*: W* → V* by f(φ) = φ ∘ f
f: V → W* is the same as f*: W → V* by f(v) = w* ⇔ f*(w) = v*



Thank you for your attention!

I hope that was of some help.