What is...the dual vector spaces?

Or: Two flipped sides.

My wish list for duality (in mathematics and beyond).

V is some object, V^{*} its dual. The duality _* should satisfy:

- I want $\left(V^{*}\right)^{*} \cong V$
- I want that an operation $V \rightarrow W$ turns into an operation $W^{*} \rightarrow V^{*}$
- I want that operations $V \rightarrow W^{*}$ correspond to operations $W^{*} \rightarrow V$

Duality in mathematics is not a theorem, but a "principle" (Atiyah)
Everything that is true about V has a dual statement which is true about V^{*}

Two points meet in one line, two lines meet in one point:
vs.

Let us look at linear maps

Consider the usual inner product on \mathbb{R}^{3} :

$$
\langle v, w\rangle=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

Another way of writing this:

$$
\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)\left(\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right)=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

$$
\left\langle v,{ }_{-}\right\rangle: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad w \mapsto\langle v, w\rangle \leftrightarrow(\langle v,(1,0,0)\rangle\langle v,(0,1,0)\rangle\langle v,(0,0,1)\rangle)=\left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right)
$$

Each vector $v \in \mathbb{R}^{3}$ corresponds to a linear map $\left\langle v,{ }_{-}\right\rangle: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and vice versa

The transpose space

$$
\begin{array}{ll}
\hline \mathbb{R}^{2} \text { as column vectors } & \mathbb{R}^{2} \text { as row vectors } \\
\quad \mathbb{R}^{2}=\left\{\binom{a}{b}: \mathbb{R} \rightarrow \mathbb{R}^{2} \mid a, b \in \mathbb{R}\right\} & \left(\mathbb{R}^{2}\right)^{*}=\left\{(a b): \mathbb{R}^{2} \rightarrow \mathbb{R} \mid a, b \in \mathbb{R}\right\} \\
\hline
\end{array}
$$

The difference?
$\binom{a}{b}$ takes a number λ and gives a vector $\lambda\binom{a}{b}$ $\left(\begin{array}{ll}a b\end{array}\right)$ takes a vector $\binom{c}{d}$ and gives a number $a c+b d$

Example $(a=b=1)$. One of them is one-dimensional, the other kind of as well

For completeness: A formal definition.

The dual vector space is $V^{*}=\operatorname{End}_{K}(V, \mathbb{K})$
Important facts for V finite-dimensional be careful with infinities:

- Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of vector space V. The dual vector space $V^{*}=\operatorname{End}_{K}(V, \mathbb{K})$ has basis $B=\left\{v_{1}^{*}, \ldots, v_{n}^{*}\right\}$ given by linear maps

$$
v_{i}^{*}: V \rightarrow \mathbb{K}, \quad v_{i}^{*}\left(v_{j}\right)= \begin{cases}1 & \text { if } \mathrm{i}=\mathrm{j} \\ 0 & \text { else }\end{cases}
$$

- $\left(V^{*}\right)^{*} \cong V$ canonically by $v^{* *}(\phi)=\phi(v)$
- $f: V \rightarrow W$ gives $f^{*}: W^{*} \rightarrow V^{*}$ by $f(\phi)=\phi \circ f$
- $f: V \rightarrow W^{*}$ is the same as $f^{*}: W \rightarrow V^{*}$ by $f(v)=w^{*} \Leftrightarrow f^{*}(w)=v^{*}$

Dimensions turn around

$$
v=\left(\begin{array}{c}
1 / 2 \\
0 \\
1 / 2
\end{array}\right)
$$

$$
\text { Vector }(0.5,0,0.5)
$$

$$
\langle V,-\rangle \leftrightarrow
$$

$\langle V,-\rangle \leftrightarrow M$

Thank you for your attention!

I hope that was of some help.

