What is...the LU decomposition?

Or: Lower-upper.

Lower L and upper U triangular matrices are easy, e.g.:

- It is easy to find eigenvalues, compute determinants etc.

$$
U=\left(\begin{array}{ccc}
1 & A & B \\
0 & 2 & C \\
0 & 0 & 3
\end{array}\right) \rightsquigarrow \operatorname{det}(U)=1 \cdot 2 \cdot 3=6
$$

- Solving linear equations is straightforward:

$$
\left(\begin{array}{lll}
1 & A & B \\
0 & 2 & C \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \rightsquigarrow\left\{\begin{array}{l}
z=1 / 3 c \\
y=1 / 2(b-C z) \\
x=1 / 1(a-A y-B z)
\end{array}\right.
$$

- Inversion is clear:

$$
U^{-1}=\left(\begin{array}{ccc}
1 / 1 & -A /(1 \cdot 2) & (A C-B 2) /(1 \cdot 2 \cdot 3) \\
0 & 1 / 2 & -C /(2 \cdot 3) \\
0 & 0 & 1 / 3
\end{array}\right)
$$

Question. Can we always factor a matrix as $M=L U$? Almost, as we will see.

Let look at examples, preferring L to be normalized

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
4 & 1 & 0 \\
7 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 1
\end{array}\right)=L U
$$

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) ?
$$

Well, instead we solve

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
4 & 1 & 0 \\
7 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \quad \& \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -3 & -6 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)
$$

Slight catch

You might need a permutation matrix to make things work, e.g.

$$
\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right)\left(\begin{array}{ll}
b & c \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
b & c \\
a b & a c+d
\end{array}\right) \neq\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

Instead:

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

In other words, we should expect to have

$$
M=P L U
$$

For completeness: A formal definition.

A PLU decomposition of a square matrix M is $M=P L U$, where...

- P is a permutation matrix
- L is lower triangular with 1 s on the diagonal
- U is upper triangular

Important facts:

- PLU decompositions always exist and are unique
- Solving $M x=b$ is equivalent to solving $L y=P b$ and $U x=y$
- The determinant of M is $\operatorname{det}(M)= \pm r_{11} \ldots r_{n n}$, with the sign depending on P

Pascals triangle modulo 2 in its PLU decomposition

Thank you for your attention!

I hope that was of some help.

