What is...Gaussian elimination?

Or: How to find intersections.

$$
\left\{\begin{array}{l}
1 x-1 y=0 \tag{1}\\
1 x+1 y=1 / 2
\end{array}\right.
$$

or equivalently

$$
\left(\begin{array}{cc|c}
1 & -1 & 0 \\
1 & 1 & 1 / 2
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
1 x+1 y=1 / 2 \\
1 x-1 y=0 \tag{2}
\end{array}\right.
$$

or equivalently

$$
\left(\begin{array}{cc|c}
1 & 1 & 1 / 2 \\
1 & -1 & 0
\end{array}\right)
$$

The intersection does not change

Non-zero scalar times a row

$$
\begin{align*}
& \left\{\begin{array}{l}
1 x-1 y=0 \\
1 x+1 y=1 / 2
\end{array}\right. \tag{1}\\
& \text { or equivalently } \tag{2}\\
& \left(\begin{array}{cc|c}
1 & -1 & 0 \\
1 & 1 & 1 / 2
\end{array}\right) \\
& \left\{\begin{array}{l}
1 x-1 y=0 \\
-4 x-4 y=-2
\end{array}\right. \tag{1}\\
& \text { or equivalently } \tag{2}\\
& \left(\begin{array}{cc|c}
1 & -1 & 0 \\
-4 & -4 & -2
\end{array}\right)
\end{align*}
$$

The intersection does not change

Row plus a row

$$
\left\{\begin{array}{l}
1 x-1 y=0 \\
1 x+1 y=1 / 2 \tag{2}
\end{array}\right.
$$

or equivalently

$$
\left(\begin{array}{cc|c}
1 & -1 & 0 \\
1 & 1 & 1 / 2
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
1 x-1 y=0 \tag{1}\\
2 x+0 y=1 / 2
\end{array}\right.
$$

> or equivalently

$$
\left(\begin{array}{cc|c}
1 & -1 & 0 \\
2 & 0 & 1 / 2
\end{array}\right)
$$

For completeness: A formal definition.

Gaussian elimination is a set of operations on a matrix:
(a) Swapping two rows
(b) Multiplying a row by a nonzero scalar
(c) Adding one row to another row

Important facts:
(a) Gaussian elimination transforms any matrix into staircase form, e.g.:

$$
\left(\begin{array}{ccc}
2 & 1 & -1 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1
\end{array}\right)
$$

(b) Row-equivalent matrices have the same rank
(c) Gaussian elimination transforms any system of linear equations into a one which is easy to solve and has the same solutions, e.g.:

$$
\left\{\begin{array} { l l }
{ 2 x + y - z = 8 } & { (1) } \tag{1}\\
{ - 3 x - y + 2 z = - 1 1 } & { (2) } \\
{ - 2 x + y + 2 z = - 3 } & { \text { (3) } }
\end{array} \rightsquigarrow \left\{\begin{array}{l}
1 x+0 y+0 z=2 \\
0 x+1 y+0 z=3 \\
0 x+0 y+1 z=-1
\end{array}\right.\right.
$$

Calculating the inverse matrix

$$
M=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Perform Gaussian elimination:

$$
\left(\begin{array}{ccc|ccc}
2 & -1 & 0 & 1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 1 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\
0 & 0 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right)
$$

We get

$$
M^{-1}=\left(\begin{array}{ccc}
\frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right)
$$

Thank you for your attention!

I hope that was of some help.

