What is...a system of linear equations?

Or: Intersections matter.

A linear equation is a linear space

$1 \cdot x+2 \cdot y+3 \cdot z=0 \rightsquigarrow$ plane in \mathbb{R}^{3}

Let us analyze dim 2

$$
\left\{\begin{array}{l}
a x+b y=c \tag{1}\\
d x+e y=f
\end{array}\right.
$$

The left is the generic case - it almost always happens

How to solve these?

$$
\left\{\begin{array}{ll}
1 x+2 y=3 & (1) \\
4 x+5 y=6 & (2)
\end{array} \text { «ぃ }\left(\begin{array}{ll|l}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\right.
$$

$$
\begin{aligned}
\left(\begin{array}{ll|l}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) & \sim\left(\begin{array}{cc|c}
-4 & -8 & -12 \\
4 & 5 & 6
\end{array}\right) \sim\left(\begin{array}{cc|c}
-4 & -8 & -12 \\
0 & -3 & -6
\end{array}\right) \\
& \sim\left(\begin{array}{cc|c}
-4 & -8 & -12 \\
0 & 8 & 16
\end{array}\right) \sim\left(\begin{array}{cc|c}
-4 & 0 & 4 \\
0 & 8 & 16
\end{array}\right) \\
& \Rightarrow\left\{\begin{array}{cc}
-4 x+0 y=4 & \left(1^{\prime}\right) \\
0 x+8 y=16 & \left(2^{\prime}\right)
\end{array}\right.
\end{aligned}
$$

This is Gaussian elimination

For completeness: A formal definition.

A system of linear equations is of the form

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}, \\
\text { where } x_{i} \text { are variables and } a_{i j} \in \mathbb{K}
\end{gathered}
$$

Equivalently, one wants to solve

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \ddots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

for the variables x_{i}

All that can happen is...

Thank you for your attention!

I hope that was of some help.

