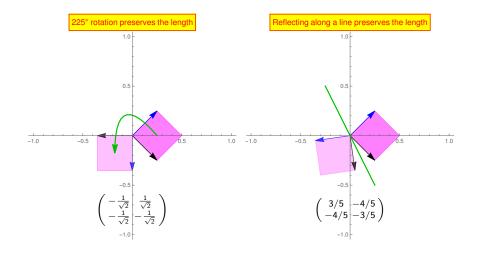
What is...an isometry?

Or: Tessellations of my walls

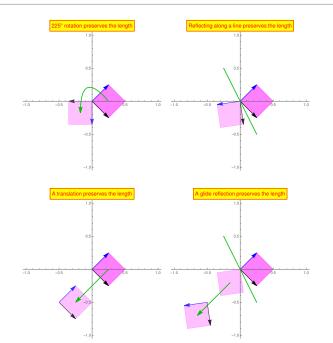


Matrices that preserve length

225° rotation:
$$\begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
, transpose=inverse: $\begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$
Reflection along a line: $\begin{pmatrix} 3/5 & -4/5 \\ -4/5 & -3/5 \end{pmatrix}$, transpose=inverse: $\begin{pmatrix} 3/5 & -4/5 \\ -4/5 & -3/5 \end{pmatrix}$

Transpose=inverse holds for all these length preserving maps

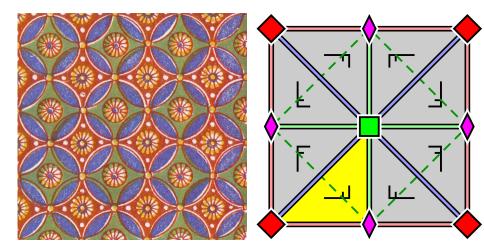
All Euclidean plane isometries



Given two inner product spaces V and W, a (linear) isometry is a (linear) map $M: V \to W$ that preserves the inner product $\langle v, v \rangle = \langle Mv, Mv \rangle$

Important facts:

- (a) $\langle v, w \rangle = \langle Mv, Mw \rangle$ also holds, so isometries preserve angles as well
- (b) For V = W the condition $\langle v, v \rangle = \langle Mv, Mv \rangle$ is equivalent to $MM^* = M^*M = id$
- (c) For $V = W = \mathbb{R}^n$ with Euclidean inner product we have: M is a linear isometry if and only if $M^T = M^{-1}$ Orthogonal
- (d) For $V = W = \mathbb{C}^n$ with Euclidean inner product we have: M is a linear isometry if and only if $\overline{M^T} = M^{-1}$ Unitary



Can you spot all symmetries?

Thank you for your attention!

I hope that was of some help.