What is...an isometry?

Or: Tessellations of my walls

Isometry = a length preserving action

Matrices that preserve length

$$
225^{\circ} \text { rotation: }\left(\begin{array}{cc}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right), \quad \text { transpose }=\text { inverse: }\left(\begin{array}{cc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

Reflection along a line: $\left(\begin{array}{cc}3 / 5 & -4 / 5 \\ -4 / 5 & -3 / 5\end{array}\right)$, transpose=inverse: $\left(\begin{array}{cc}3 / 5 & -4 / 5 \\ -4 / 5 & -3 / 5\end{array}\right)$

Transpose=inverse holds for all these length preserving maps

All Euclidean plane isometries

For completeness: A formal definition
Given two inner product spaces V and W, a (linear) isometry is a (linear) map $M: V \rightarrow W$ that preserves the inner product $\langle v, v\rangle=\langle M v, M v\rangle$

Important facts:
(a) $\langle v, w\rangle=\langle M v, M w\rangle$ also holds, so isometries preserve angles as well
(b) For $V=W$ the condition $\langle v, v\rangle=\langle M v, M v\rangle$ is equivalent to $M M^{*}=M^{*} M=\mathrm{id}$
(c) For $V=W=\mathbb{R}^{n}$ with Euclidean inner product we have: M is a linear isometry if and only if $M^{T}=M^{-1}$ Orthogonal
(d) For $V=W=\mathbb{C}^{n}$ with Euclidean inner product we have: M is a linear isometry if and only if $\overline{M^{T}}=M^{-1}$ Unitary

Wallpaper groups (there are 17 - here $\mathbf{p 4 m}$)

Can you spot all symmetries?

Thank you for your attention!

I hope that was of some help.

