Or: A notion of dimension.



Ways to write a vector.
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All of these are equally valid.



Linear dependent — too much information
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With three linearly independent vectors we can write v in infinitely many ways.
Choice, bad!



Not spanning — not enough information
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With too few or “badly positioned” vectors we might not be able to write v at all.
Clearly bad!
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For completeness: A formal definition.

Let B ={w,...,v,} be a subset of some vector space V
B is called linearly independent if > A;v; = 0 has only the trivial solution
Ai=0
B is called spanning if every v € V can be written as v = >_ \;v; for some
A €K
If B is both, then B is called a basis

Important facts:

If B is a basis, then every vector v € V can be uniquely written as v =Y \;v;
for some \; € K

Two bases always have the same size, the dimension of V



Dimensions need not to be linear

)

One coordinate
determines it

dimension=1

Two coordinates
determine it
dimension=2




| hope that was of some help.



