What is...a basis?

Or: A notion of dimension.

Ways to write a vector.

All of these are equally valid.

Linear dependent - too much information

With three linearly independent vectors we can write v in infinitely many ways. Choice, bad!

Not spanning - not enough information

With too few or "badly positioned" vectors we might not be able to write v at all. Clearly bad!

For completeness: A formal definition.

Let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a subset of some vector space V

- B is called linearly independent if $\sum \lambda_{i} v_{i}=0$ has only the trivial solution $\lambda_{i}=0$
- B is called spanning if every $v \in V$ can be written as $v=\sum \lambda_{i} v_{i}$ for some $\lambda_{i} \in \mathbb{K}$
- If B is both, then B is called a basis

Important facts:

- If B is a basis, then every vector $v \in V$ can be uniquely written as $v=\sum \lambda_{i} v_{i}$ for some $\lambda_{i} \in \mathbb{K}$
- Two bases always have the same size, the dimension of V

Dimensions need not to be linear

One coordinate determines it dimension=1

Two coordinates determine it dimension=2

Thank you for your attention!

I hope that was of some help.

