Or: Nilpotent vanishing.



The exponential function
The exponential function
e’":l—|—%m1+%m2+%m3+...

is ubiquitous in mathematics. Can we generalize it?

It formally makes sense for any m in some real vector space as long as you can
multiply m. In this setting we have the classical properties, e.g.:

» We have

=1
» We have
ep’ mp _ p—lemp
» We have
edJrn — eden

This proof uses dn = nd.



Let us look at Jordan blocks
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» M is a diagonal D plus a nilpotent matrix N:
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» Since DN = ND, we have
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Wait: This always works?

M = P~XD + N)P

_ P TH(DHNP _ p-1,(D+N)p _ p=1,D Np

since DN = ND always holds.
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For completeness: A formal definition.

Let M be an nxn real or complex matrix. The exponential e of M is the nxn
matrix given by the power series

eM=M+ IM + LM+ M3+
where MO is the nxn identity matrix.

The series always converges and for n = 1 one recovers the classical exponential
function.



Here come some funny examples.

Diamond and Exp(Diamond)=Gaussian:
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| hope that was of some help.



