What is...the exponential of a matrix?

Or: Nilpotent vanishing.

The exponential function

The exponential function

$$
e^{m}=1+\frac{1}{1!} m^{1}+\frac{1}{2!} m^{2}+\frac{1}{3!} m^{3}+\ldots
$$

is ubiquitous in mathematics. Can we generalize it?

It formally makes sense for any m in some real vector space as long as you can multiply m. In this setting we have the classical properties, e.g.:

- We have

$$
e^{0}=1
$$

- We have

$$
e^{p^{-1} m p}=p^{-1} e^{m} p
$$

- We have

$$
e^{d+n}=e^{d} e^{n}
$$

This proof uses $d n=n d$.

Let us look at Jordan blocks

$$
M=\left(\begin{array}{c|cc}
\hline \lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)
$$

- M is a diagonal D plus a nilpotent matrix N :
- We have

$$
e^{D}=i d+\frac{1}{1!}\left(\begin{array}{ccc}
\lambda^{1} & 0 & 0 \\
0 & \lambda^{1} & 0 \\
0 & 0 & \lambda^{1}
\end{array}\right)+\frac{1}{2!}\left(\begin{array}{ccc}
\lambda^{2} & 0 & 0 \\
0 & \lambda^{2} & 0 \\
0 & 0 & \lambda^{2}
\end{array}\right)+\frac{1}{3!}\left(\begin{array}{ccc}
\lambda^{3} & 0 & 0 \\
0 & \lambda^{3} & 0 \\
0 & 0 & \lambda^{3}
\end{array}\right)+\ldots=\left(\begin{array}{ccc}
e^{\lambda} & 0 & 0 \\
0 & e^{\lambda} & 0 \\
0 & 0 & e^{\lambda}
\end{array}\right)
$$

- We have

$$
e^{N}=i d+\frac{1}{1!}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)+\frac{1}{2!}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\frac{1}{3!}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\ldots=\left(\begin{array}{ccc}
1 & 1 & 1 / 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

- Since $D N=N D$, we have

$$
e^{M}=e^{D+N}=e^{D} e^{N}=\left(\begin{array}{ccc}
e^{\lambda} & e^{\lambda} & e^{\lambda} / 2 \\
0 & e^{\lambda} & e^{\lambda} \\
0 & 0 & e^{\lambda}
\end{array}\right)=e^{\lambda} e^{N}
$$

Wait: This always works?

$$
M=P^{-1}(D+N) P
$$

$$
e^{M}=e^{P^{-1}(D+N) P}=P^{-1} e^{(D+N)} P=P^{-1} e^{D} e^{N} P
$$

since $D N=N D$ always holds.

Example.

$$
M=\left(\begin{array}{ccc}
2 & -1 / 2 & -1 / 2 \\
0 & 3 / 2 & -1 / 2 \\
-1 & 1 / 2 & 3 / 2
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1
\end{array}\right)
$$

Thus:

$$
e^{M}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1
\end{array}\right)^{-1}\left(\begin{array}{ccc}
e^{1} & 0 & 0 \\
0 & e^{2} & 0 \\
0 & 0 & e^{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1
\end{array}\right)^{-1}\left(\begin{array}{ccc}
e^{1} & 0 & 0 \\
0 & e^{2} & e^{2} \\
0 & 0 & e^{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & -1 \\
1 & -1 & -1
\end{array}\right)
$$

For completeness: A formal definition.

Let M be an $n \times n$ real or complex matrix. The exponential e^{M} of M is the $n \times n$ matrix given by the power series

$$
e^{M}=M^{0}+\frac{1}{1!} M^{1}+\frac{1}{2!} M^{2}+\frac{1}{3!} M^{3}+\ldots
$$ where M^{0} is the $n \times n$ identity matrix.

The series always converges and for $n=1$ one recovers the classical exponential function.

Here come some funny examples.

Diamond and $\operatorname{Exp}($ Diamond $)=$ Gaussian:

Gaussian and $\operatorname{Exp}($ Gaussian $)=$ Crossed Gaussian:

Thank you for your attention!

I hope that was of some help.

