What is...the Jordan normal form again?

Or: How to find and compute a gold standard.

An almost Jordan block

$$
M=\left(\begin{array}{ccc}
\hline \lambda & 1 & 0 \\
0 & \boxed{\lambda} & 1 \\
0 & 0 & \boxed{\lambda}
\end{array}\right)
$$

The only eigenvector is $(1,0,0)$.

$$
N^{2}=\left(\begin{array}{ccc}
\boxed{0} & 0 & \boxed{1} \\
0 & \boxed{0} & 0 \\
0 & 0 & \boxed{0}
\end{array}\right)
$$

New "eigenvector" ($0,1,0$).

$$
N=M-\lambda i d=\left(\begin{array}{c|c|c}
\hline 0 & 1 & 1 \\
0 & \boxed{0} & 1 \\
0 & 0 & \boxed{0}
\end{array}\right)
$$

Still the same eigenvectors.

$$
N^{3}=\left(\begin{array}{ccc}
\boxed{0} & 0 & 0 \\
0 & \boxed{0} & 0 \\
0 & 0 & \boxed{0}
\end{array}\right)
$$

New "eigenvector" $(0,0,1)$.

This calculation does not depend on λ or on 1 . Why not take 0 ? We get Jordan blocks.

An example

$$
M=\left(\begin{array}{cccc}
-5 / 2 & 1 & 1 & 3 / 2 \\
-9 / 2 & 3 & 1 & 3 / 2 \\
-13 / 2 & 1 & 4 & 5 / 2 \\
-11 / 2 & 1 & 1 & 9 / 2
\end{array}\right)
$$

- First, we calculate the characteristic polynomial. We get $p(X)=(X-1)(X-2)(X-3)^{2}$.
- An eigenvector for $\lambda=1$ is $(1,1,1,1)$. An eigenvector for $\lambda=2$ is $(1,2,1,1)$. An eigenvector for $\lambda=3$ is ($1,1,3,1$).
- Form a base-change matrix

$$
P=\left(\begin{array}{ccc}
1 & 1 & 1
\end{array}\right)
$$

- We get a simpler matrix, which is almost there:

$$
P^{-1} M P=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 1 / 2 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

This is where the kernels come in!

$$
M-3 i d=\left(\begin{array}{ccccc}
-11 / 2 & 1 & 1 & 3 / 2 \\
-9 / 2 & 0 & 1 & 3 / 2 \\
-13 / 2 & 1 & 1 & 5 / 2 \\
-11 / 2 & 1 & 1 & 3 / 2
\end{array}\right)
$$

$$
(M-3 i d)^{2}=\left(\begin{array}{llll}
11 & -3 & -2 & -2 \\
10 & -2 & -2 & -2 \\
11 & -3 & -2 \\
11 & -3 & -2 & -2
\end{array}\right)
$$

has the new, interesting eigenvector $(1,1,1,3)$ in its kernel.

Indeed:

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 3 & 1 \\
1 & 1 & 1 & 3
\end{array}\right)^{-1}\left(\begin{array}{llll}
-5 / 2 & 1 & 1 & 3 / 2 \\
-9 / 2 & 3 & 1 & 3 / 2 \\
-13 / 2 & 1 & 4 & 5 / 2 \\
-11 / 2 & 1 & 1 & 9 / 2
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 1 & 3 & 1 \\
1 & 1 & 1 & 3
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

For completeness: A formal definition.

A generalized eigenvector v_{m} of M is a solution to

$$
(M-\lambda i d)^{m} v_{m}=0
$$

for λ an eigenvalue. It is of rank m if

$$
(M-\lambda i d)^{m-1} v_{m} \neq 0
$$

A chain $\left\{v_{m}, \ldots, v_{1}\right\}$ of generalized eigenvectors is a linear independent set satisfying

$$
v_{j}=(M-\lambda i d)^{m-j} v_{m}
$$

Such a chain is called a Jordan chain if m is maximal with respect to those properties.

For every complex matrix M there is a basis made of Jordan chains.

Well, almost. Warning!

$$
\left(\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
-1 & 1 & 1 \\
-1 / 2 & 0 & 3 / 2
\end{array}\right)
$$

Eigenvectors ($1,0,1$) and ($0,1,0$).

$$
\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
1 & 0 & c
\end{array}\right)^{-1}\left(\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
-1 & 1 & 1 \\
-1 / 2 & 0 & 3 / 2
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & b \\
1 & 0 & c
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 1 / 2(-a+c) \\
0 & 1 & -a+c \\
0 & 0 & 1
\end{array}\right)
$$

We can not go on from here since $\left(\begin{array}{lll}1 & 0 & a \\ 0 & 1 & 0 \\ 1 & 0 & a\end{array}\right)$ is not invertible.
We need to find a Jordan chain. In this case we can use:

$$
v_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad v_{1}^{\prime}=\left(\begin{array}{c}
1 / 2 \\
1 \\
1 / 2
\end{array}\right), \quad v_{2}^{\prime}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 2 & 0 & 1 / 2 \\
-1 & 0 & 1 \\
-1 / 2 & 0 & 1 / 2
\end{array}\right)\left(\begin{array}{c}
1 / 2 \\
1 \\
1 / 2
\end{array}\right)
$$

Thank you for your attention!

I hope that was of some help.

