What is...the Jordan normal form?

Or: Why (almost) all matrices are diagonalizable.

What are the equivalence classes under conjugation?

Consider a complex matrix:

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Question. What are the complex matrices N such that $M=P^{-1} N P$ for some invertible complex matrix P ?

Answer. The matrices with the same Jordan-type.

A first example.

$$
M=\left(\begin{array}{cc}
-1+a & -1+a \\
4-a & 3-a
\end{array}\right) ; \text { eigenvalues are } 1 \pm \sqrt{a} .
$$

For $a \neq 0$ we have two eigenvalues, so M is diagonalizable.
For $a=0$ we get the sole (up to scalars) eigenvector $\binom{-1}{2}$, so M is not diagonalizable.

What can we do?

What is the best approximation to a diagonal matrix? Jordan blocks!

$$
J_{\lambda}=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

Eigenvalues are all λ, the only eigenvector is $(1,0)$.

$$
J_{\lambda}=\left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)
$$

Eigenvalues are all λ, the only eigenvector is $(1,0,0)$.

$$
J_{\lambda}=\left(\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right)
$$

Eigenvalues are all λ, the only eigenvector is ($1,0,0,0$).

We can't do better, so let us except this is the easiest possible.

For completeness: A formal definition.

The Jordan normal form of M is a matrix equivalent to it of the form

$$
\left(\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{k}
\end{array}\right), \quad J_{i}=\left(\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right)
$$

The Jordan normal form exists, is unique up to order of the Jordan blocks J_{i}, and a complete invariant under base-change.

Almost all matrices are diagonalizable.

Knowing the eigenvalues and the size of the Jordan blocks determines matrices up to base-change \sim.

A random 2×2 matrix is almost always diagonalizable.

Thank you for your attention!

I hope that was of some help.

