Or: Finding the right coordinate system.



Making axes eigenvectors
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The xy-axes are eigenvectors The xy-axes are not eigenvectors



Rotate, reflect and scale
( 0 ’1/2) has eigenvectors (1/2,—1), (1/2,1). Take P = (1/2 _1).

P(3) = (a/2 J;g - a) —13>
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P(1) moves everything in place
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P(2/3) gets us almost there




How can we check whether some matrix is diagonalizable?

To check whether an n-n matrix M is diagonalizable we:
First calculate the characteristic polynomial p(X).

Check whether p(X) has n distinct roots (eigenvalues \) — if yes, we are in
business.

If no, then we need to find the eigenvectors by solving
(A=M)v =0.

If we get n linear independent solutions, then M is diagonalizable, and
otherwise it is not.



For completeness: A formal definition.

A matrix M (over some ground field) is called diagonalizable if there exists an
invertible matrix P such that P~1MP is diagonal.

» This happens if and only if there exists a basis given by eigenvectors of M.



Are all matrices diagonalizable? Well, almost all...

not dia over R or C if a =0,

11 not dia over R, but over C if a < 0,
(1
dia over R and C if a > 0.
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a=-0.5 a=2>0 a=20.5

Almost all matrices are diagonalizable — over C — we will see this when we
generalize this notion to the Jordan normal form.



| hope that was of some help.



