What is...diagonalization?

Or: Finding the right coordinate system.

Making axes eigenvectors

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
0 & -1 / 2 \\
-2 & 0
\end{array}\right)
$$

The $x y$-axes are eigenvectors

The $x y$-axes are not eigenvectors

Rotate, reflect and scale

$$
\left(\begin{array}{cc}
0 & -1 / 2 \\
-2 & 0
\end{array}\right) \text { has eigenvectors }(1 / 2,-1),(1 / 2,1) . \text { Take } P=\left(\begin{array}{cc}
1 / 2 & -1 \\
1 / 2 & 1
\end{array}\right)
$$

$$
P(a)=\left(\begin{array}{cc}
a / 2+(1-a) & -a \\
a / 2 & 1
\end{array}\right)
$$

$$
P(2 / 3)^{-1}\left(\begin{array}{cc}
0 & -1 / 2 \\
-2 & 0
\end{array}\right) P(2 / 3)
$$

$P(1)$ moves everything in place

$P(2 / 3)$ gets us almost there

How can we check whether some matrix is diagonalizable?

To check whether an n - n matrix M is diagonalizable we:

- First calculate the characteristic polynomial $p(X)$.
- Check whether $p(X)$ has n distinct roots (eigenvalues λ) - if yes, we are in business.
- If no, then we need to find the eigenvectors by solving

$$
(\lambda-M) v=0 .
$$

- If we get n linear independent solutions, then M is diagonalizable, and otherwise it is not.

For completeness: A formal definition.

A matrix M (over some ground field) is called diagonalizable if there exists an invertible matrix P such that $P^{-1} M P$ is diagonal.

- This happens if and only if there exists a basis given by eigenvectors of M.

Are all matrices diagonalizable? Well, almost all...

$$
\left(\begin{array}{ll}
1 & 1 \\
a & 1
\end{array}\right)\left\{\begin{array}{l}
\text { not dia over } \mathbb{R}, \text { but over } \mathbb{C} \text { if } a<0, \\
\text { not dia over } \mathbb{R} \text { or } \mathbb{C} \text { if } a=0, \\
\text { dia over } \mathbb{R} \text { and } \mathbb{C} \text { if } a>0
\end{array}\right.
$$

$a=-0.5$

$a=0$

$a=0.5$

Almost all matrices are diagonalizable - over \mathbb{C} - we will see this when we generalize this notion to the Jordan normal form.

Thank you for your attention!

I hope that was of some help.

