What are...eigenvalues and eigenvectors?

Or: Linear fixed points.

Fixed vectors.

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

no fixed vector

fixed vectors

What does it mean to be fixed by a matrix?

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{-y}{x}=\lambda\binom{x}{y} \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}=\binom{y}{x}=\lambda\binom{x}{y}
$$

No solution in \mathbb{R}^{2} since $-y=\lambda x$ and Solutions in $\mathbb{R}^{2}:(\lambda=1$ and $x=y)$ or
$x=\lambda y$ implies $\lambda^{2} x=-x$. ($\lambda=-1$ and $x=-y$).

Solutions to "matrix times vector $=$ scalar vector" are called eigenvectors; the scalar is called an eigenvalue.

More example!

$$
\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\binom{x}{y}=\binom{x-y}{y-x}=\lambda\binom{x}{y} \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{x}{y}=\lambda\binom{x}{y}
$$

Solutions in $\mathbb{R}^{2}:(\lambda=2$ and $x=-y)$ or Solutions in $\mathbb{R}^{2}: \lambda=1$ and "every vec($\lambda=0$ and $x=y$). tor".

The zero vector is a boring solution, so it is always excluded.
The zero eigenvalue is interesting.

For completeness: A formal definition.

An eigenvalue λ of a $n \times n$ matrix M is a scalar in the underlying ground field such that there exists a vector $v \neq 0$ with $M v=\lambda \cdot v$.
Any such v is called an eigenvector of M of eigenvalue λ.

Another thing that is cool about eigenvalues and eigenvectors.
Try to find M^{100} for some matrix M. For example:

$$
M=\left(\begin{array}{ll}
0.8 & 0.3 \\
0.2 & 0.7
\end{array}\right), M^{2}=\left(\begin{array}{ll}
0.7 & 0.45 \\
0.3 & 0.55
\end{array}\right), \ldots, M^{100} \approx\left(\begin{array}{ll}
0.6 & 0.6 \\
0.4 & 0.4
\end{array}\right) .
$$

Eigenvalues are 1 and 0.5 , eigenvectors are $\approx(0.832,0.555)$ and $(-0.707,0.707)$.
Now calculate

$$
M^{100} \approx\left(\begin{array}{cc}
0.832 & -0.707 \\
0.555 & 0.707
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0.832 & -0.707 \\
0.555 & 0.707
\end{array}\right)^{-1} \approx\left(\begin{array}{cc}
0.6 & 0.6 \\
0.4 & 0.4
\end{array}\right) .
$$

Why? We see that in another video.

Thank you for your attention!

I hope that was of some help.

