What are...eigenvalues and eigenvectors?

Or: Linear fixed points.

no fixed vector

fixed vectors

What does it mean to be fixed by a matrix?

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ x \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

No solution in \mathbb{R}^2 since $-y = \lambda x$ and Solutions in \mathbb{R}^2 : $(\lambda = 1 \text{ and } x = y)$ or $x = \lambda y$ implies $\lambda^2 x = -x$. $(\lambda = -1 \text{ and } x = -y)$.

Solutions to "matrix times vector = scalar vector" are called eigenvectors; the scalar is called an eigenvalue.

More example!

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ y - x \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix}$$

Solutions in \mathbb{R}^2 : $(\lambda = 2 \text{ and } x = -y)$ or Solutions in \mathbb{R}^2 : $\lambda = 1$ and "every vec- $(\lambda = 0 \text{ and } x = y)$. tor".

The zero vector is a boring solution, so it is always excluded. The zero eigenvalue is interesting.

For completeness: A formal definition.

An eigenvalue λ of a $n \times n$ matrix M is a scalar in the underlying ground field such that there exists a vector $v \neq 0$ with $Mv = \lambda \cdot v$.

Any such v is called an eigenvector of M of eigenvalue λ .

Another thing that is cool about eigenvalues and eigenvectors.

Try to find M^{100} for some matrix M. For example:

$$M = \begin{pmatrix} 0.8 & 0.3 \\ 0.2 & 0.7 \end{pmatrix}, M^2 = \begin{pmatrix} 0.7 & 0.45 \\ 0.3 & 0.55 \end{pmatrix}, ..., M^{100} \approx \begin{pmatrix} 0.6 & 0.6 \\ 0.4 & 0.4 \end{pmatrix}.$$

Eigenvalues are 1 and 0.5, eigenvectors are \approx (0.832, 0.555) and (-0.707, 0.707).

Now calculate

$$\mathcal{M}^{100} \approx \begin{pmatrix} 0.832 & -0.707 \\ 0.555 & 0.707 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0.832 & -0.707 \\ 0.555 & 0.707 \end{pmatrix}^{-1} \approx \begin{pmatrix} 0.6 & 0.6 \\ 0.4 & 0.4 \end{pmatrix}.$$

Why? We see that in another video.

Thank you for your attention!

I hope that was of some help.