What is...the characteristic polynomial?

Or: Matrix roots.

Annihilating polynomials.

$$
\begin{aligned}
M= & \left.\left(\begin{array}{llll}
1 & 5 & 8 & 10 \\
0 & 2 & 6 & 9 \\
0 & 0 & 3 & 7 \\
0 & 0 & 0 & 4
\end{array}\right), \begin{array}{r}
p(X)=(X-1)(X-2)(X-3)(X-4) \\
\end{array}\right) \\
p(M) & =\left(\begin{array}{llll}
0 & 5 & 8 & 10 \\
0 & 1 & 6 & 9 \\
0 & 0 & 2 & 7 \\
0 & 0 & 0 & 3
\end{array}\right)\left(\begin{array}{cccc}
-1 & 5 & 8 & 10 \\
0 & 0 & 6 & 9 \\
0 & 0 & 1 & 7 \\
0 & 0 & 0 & 2
\end{array}\right)\left(\begin{array}{cccc}
-2 & 5 & 8 & 10 \\
0 & -1 & 6 & 9 \\
0 & 0 & 0 & 7 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
-3 & 5 & 8 & 10 \\
0 & -2 & 6 & 9 \\
0 & 0 & -1 & 7 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

What on earth is happening?

How can we understand this miracle?

Bad idea. Calculate M^{4} etc.:

$$
M^{4}=\left(\begin{array}{cccc}
1 & 15 & 210 & 1285 \\
0 & 16 & 130 \\
0 & 0 & 81 & 930 \\
0 & 0 & 0 & 256
\end{array}\right), \ldots
$$

Better idea. Look at the zeros:

$$
\left(\begin{array}{cccc}
-2 & 5 & 8 & 10 \\
0 & -1 & 6 & 9 \\
0 & 0 & 0 & 7 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
-3 & 5 & 8 & 10 \\
0 & -2 & 6 & 9 \\
0 & 0 & -1 & 7 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
6 & -4 & -10 & 5 \\
0 & 2 & -4 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Can you see how this continues when multiplying with the factors for

$$
(X-1)(X-2) ?
$$

The characteristic polynomial $p(X)$ of a matrix M in general?
Here is another expression that annihilates M, namely

$$
p(X)=\operatorname{det}(X i d-M) .
$$

(Beware: $p(M)=\operatorname{det}($ Mid $-M)=0$ is bogus, but works ;-)) Upshot: We can calculate $p(X)$ without knowing the eigenvalues of M.

$$
\begin{aligned}
M= & \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad X \text { id }-M=\left(\begin{array}{cc}
X-1 & -2 \\
-3 & X-3
\end{array}\right) \\
& p(X)=\operatorname{det}(X i d-M)=(X-1)(X-4)-6 .
\end{aligned}
$$

For completeness: A formal definition.

The characteristic polynomial $p(X)$ of a matrix M is defined as $p(X)=\operatorname{det}($ Xid $-M)$. This polynomial

- ...annihilates M, i.e. $p(M)=0$.
- ...is a product $p(X)=\left(X-\lambda_{1}\right) \ldots\left(X-\lambda_{n}\right)$ for λ_{i} being the eigenvalues of M (this needs an algebraically closed field).

A cool application.

Try to find M^{100} for some matrix M. For example:

$$
M=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), p(X)=X^{2}-5 X-2
$$

We have

$$
p(M)=0 \Rightarrow M^{2}=5 M+2 .
$$

Now calculate further

$$
\begin{gathered}
M p(M)=0 \Rightarrow M^{3}-5 M^{2}-2 M=0 \Rightarrow M^{3}=5(5 M+2)+2 M=27 M+10 . \\
M^{3}=27\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+\left(\begin{array}{cc}
10 & 0 \\
0 & 10
\end{array}\right)=\left(\begin{array}{cc}
37 & 54 \\
81 & 118
\end{array}\right) .
\end{gathered}
$$

It follows verbatim that all powers of M are linear combinations of M and id.

Thank you for your attention!

I hope that was of some help.

