What is...a vector space?

Or: Geometry à la Descartes.

First example - arrows

A collection of arrows
starting at the origin:
Yes, this is a vector space $-\mathbb{R}^{2}$

or

We can add (and subtract) arrows:

Second example - matrices

A collection of matrices

 over \mathbb{R} and 2×2Yes, this is a vector space -2×2 matrices

$$
M=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad \text { or } \quad N=\left(\begin{array}{cc}
-1 & 1 \\
2 & 1 / 2
\end{array}\right) \quad \text { or } \ldots
$$

We can scale matrices: $\quad 5 \cdot M=\left(\begin{array}{cc}5 & 10 \\ 15 & 20\end{array}\right) \quad$ or $\quad-1 \cdot N=\left(\begin{array}{cc}1 & -1 \\ -2 & -1 / 2\end{array}\right) \quad$ or...
$\begin{gathered}\text { We can add } \\ \text { (and subtract) matrices: }\end{gathered} M+N=\left(\begin{array}{cc}0 & 3 \\ 5 & 9 / 2\end{array}\right) \quad$ or $\quad M-N=\left(\begin{array}{cc}2 & 1 \\ 1 & 7 / 2\end{array}\right) \quad$ or...

Third example - polynomials

$$
\begin{aligned}
& \text { A collection of polynomials } \\
& \begin{array}{l}
\text { over } \mathbb{R} \text { and in } X \\
\text { Yes, this is a vector space }-\mathbb{R}[X]
\end{array} \quad P=X^{2}+5 X \quad \text { or } \quad Q=-10 X^{3}+2 \text { or... }
\end{aligned}
$$

We can scale polynomials: $5 \cdot P=5 X^{2}+25 X$ or $-1 \cdot Q=10 X^{3}-2$ or...

We can add

$$
P+Q=
$$

$$
P-Q=
$$ (and subtract) polynomials: $\quad-10 X^{3}+X^{2}+5 X+2$ or $10 X^{3}+X^{2}+5 X-2$ or...

For completeness: A formal definition.

A vector space V (over some field \mathbb{K}) is a set, whose elements are called vectors, together with two operations:

- Scalar multiplication $\lambda \cdot v$ of vectors $v \in V$ by a scalar $\lambda \in \mathbb{K}$
- Addition (and subtraction) $v+w$ of vectors $v, w \in V$

These operations should satisfy:

Associativity	$(v+w)+x=v+(w+x)$
Commutativity	$v+w=w+v$
Identity 1	$\exists 0$ such that $v+0=v=0+v$
Inverses	$\exists-v$ such that $v+(-v)=0=(-v)+v$
Compatibility	$(\lambda \mu) \cdot v=\lambda \cdot(\mu \cdot v)$
Identity 2	$1 \cdot v=v$
Distributivity 1	$\lambda \cdot(v+w)=\lambda \cdot v+\lambda \cdot w$
Distributivity 2	$(\lambda+\mu) \cdot v=\lambda \cdot v+\mu \cdot v$

Vector spaces can be tiny or huge

Functions $\quad(f+g)(x)=f(x)+g(x) \quad$ Infinite $f: \mathbb{R} \rightarrow \mathbb{R} \quad(\lambda \cdot f)(x)=\lambda f(x) \quad$ dimensional

Thank you for your attention!

I hope that was of some help.

