What is...linear algebra?

Or: Everything is linear.

The art of solving linear equations

$$
\left.\left\{\begin{array}{ll}
0 x+1 / 2 y-1 / 2 z=0 & \text { (Red) } \\
-1 / 2 x+0 y+1 / 2 z=0 & \text { (Green) } \\
1 / 2 x-1 / 2 y+0 z=0 & \text { (Blue) }
\end{array}\right\} \begin{array}{ccc|c}
0 & 1 / 2 & -1 / 2 & 0 \\
\text { or equivalently } \\
-1 / 2 & 0 & 1 / 2 & 0 \\
1 / 2 & -1 / 2 & 0 & 0
\end{array}\right) \quad . \quad \$
$$

The need for a machine to solve linear equations grew out of...

- ...Cartesian geometry
- ...the geometry of lines, planes and hyperplanes
- ...that solving other types of equations (polynomial or even worse) is very hard Linear algebra provides algorithms to solve linear problems

The art of first-order approximation

$$
\begin{aligned}
f(x) & =\sin (x) \cos (x) \\
& =x-\frac{2}{3} x^{3}+\frac{2 x}{15} x^{5}+\ldots \\
& =\text { tangent }+ \text { REST }
\end{aligned}
$$

The need for a machine to study linear maps grew out of...

- ...the observation that differentials are linear maps
- ...the need to have linear approximations of non-linear objects
- ...the need to have linear approximations of natural phenomena

Linear algebra provides tools to study properties of linear maps

- Vector spaces a.k.a. linear spaces
\triangleright Coordinate spaces
\triangleright Bases and dimensions
\triangleright Angles and length of vectors
$\triangleright \ldots$
- Linear maps / matrices
\triangleright Eigenvectors and eigenvalues
\triangleright Determinant and permanents
\triangleright Jordan form
\triangleright...
- Linear geometry
\triangleright Hyperplanes
\triangleright Rotation, shearing, reflections
\triangleright Systems of linear equations
$\triangleright \ldots$

Application one - Newton approximation

Question. Find x with $f(x)=0$. Problem. For almost all f this is impossible. Newton: Solve a linear problem instead.
(a) Given a point x_{i} and get tangent of f at x_{i}
(b) Find x_{i+1} with tangent $\left(x_{i+1}\right)=0$ A linear equation!
(c) Go back to (a) with x_{i+1}

Application two - PageRank by Brin-Page

The universe has four web pages with links given by:

The limit? An eigenvector problem!
Solve: $0.85 \cdot\left(\begin{array}{cccc}0 & 1 / 2 & 1 & 1 / 3 \\ 0 & 0 & 0 & 1 / 3 \\ 0 & 1 / 2 & 0 & 1 / 3 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}?(1) \\ ?(2) \\ ?(3) \\ ?(4)\end{array}\right)+\left(\begin{array}{l}(1-0.85) / 4 \\ (1-0.85) / 4 \\ (1-0.85) / 4 \\ (1-0.85) / 4\end{array}\right)=\left(\begin{array}{l}?(1) \\ ?(2) \\ ?(3) \\ ?(4)\end{array}\right)$

Thank you for your attention!

I hope that was of some help.

