What is...a knot homology?

Or: Vector spaces, not numbers

Homology, Hilbert-Poincaré, Euler

Knot homology (Khovanov, knot Floer, more...) to link polynomial (Jones, Alexander, more...) = homology to Euler characteristic

Kauffman skein calculus rescaled

(i) $\langle\emptyset\rangle=1$ Normalization
(ii) $\langle\bigcirc \cup L\rangle=\left(q+q^{-1}\right) \cdot\langle L\rangle$ Pulling out circles
(iii) Kauffman Skein

- Empty knot is normalized to 1
- Circle $=$ "number"
- Kauffman skein relation $=$ linear relation among "numbers"

Khovanov-Bar Natan skein calculus

(i) $\llbracket \emptyset \rrbracket=\mathbb{Q}$ Normalization
(ii) $\llbracket \bigcirc \cup L \rrbracket=V \otimes \llbracket L \rrbracket$ with V of grdim $q+q^{-1}$ Pulling out circles
(iii) Khovanov-Bar Natan Skein

$F=$ certain operation on chain complexes

- Empty knot is normalized to \mathbb{Q}
- Circle $=$ vector space of $\operatorname{grdim} q+q^{-1}$
- Khovanov-Bar Natan skein relation = relation in chain complexes
- The crucial m, Δ will reappear later - for now: they exist

For completeness: A formal statement

Up to normalization 【_】 is a knot invariant

 taking values in chain complexes- Taking homology of gives a link invariant in gr VS called Khovanov homology
- We have the categorification picture

Graded dimensions Hilbert-Poincaré polynomial P Khovanov polynomial P
 Jones polynomial V

j	-2	-1	0	1	2
5					$1,1,1$
3				$0,1,0$	$0,1,1$
1			$1,1,1$	$1,1,0$	
-1		$1,1,1$	$1,1,2$		
-3	$0,1,0$	$0,1,1$	$0,0,2$		
-5	$1,1,0$		$0,0,2$		
<-5			$0,0,2$		

Left $=$ right-handed trefoil? Strongly no!

- The left-handed trefoil has Khovanov polynomial $q^{3}+q+q^{9} t^{3}+q^{5} t^{2}$
- The right-handed trefoil has Khovanov polynomial $\frac{1}{q^{3}}+\frac{1}{q}+\frac{1}{q^{9} t^{3}}+\frac{1}{q^{5} t^{2}}$
- Thus, they are different - and Khovanov homology detects them as a pair

Thank you for your attention!

I hope that was of some help.

