What is...the bracket polynomial?

Or: Jones and co.

Kauffman skein calculus

(i) $\langle\emptyset\rangle=1$ Normalization
(ii) $\langle\bigcirc \cup L\rangle=-\left(A^{2}+A^{-2}\right) \cdot\langle L\rangle$ Pulling out circles
(iii) Kauffman Skein
$\left\rangle=A \cdot\langle \rangle+A^{-1} \cdot\langle \rangle\right\rangle$

- The bracket polynomial $\left\langle _\right\rangle$is a polynomial associated to a knot projection
- It is defined using a linear relation
- The linear relation involves the three ways to connect four points

On the back of an envelope

- The definition of $\left\langle _\right\rangle$gets rid of all crossings
- Computing $\left\langle _\right\rangle$is therefore easy
- This is not recursive as the calculation of the Alexander-Conway polynomial

A unique solution

$A B \cdot i d \Rightarrow A=B^{-1}$

$$
\text { Rest } \Rightarrow A^{2}+A^{-2}=- \text { circle }
$$

- Idea there should be a relation among the three ways to connect four points
- Playing with Reidemeister moves gives a unique solution
- We get an invariant by construction

For completeness: A formal statement

The bracket polynomial $\left\langle _\right\rangle \in \mathbb{Z}\left[A, A^{-1}\right]$ is a knot invariant up to Reidemeister I:

Hence:

Appropriately rescalled, $\left\langle _\right\rangle$is a knot invariant

- A scaling of $\left\langle _\right\rangle$(and changing variables $q=A^{2}$) gives the Jones polynomial
- The Jones polynomial changed knot theory drastically
- Among other things, Vaughan Jones was awarded the fields medal in 1990 for the discovery of the Jones polynomial

Left $=$ right-handed trefoil? No!

- The left-handed trefoil has Jones polynomial $-q^{4}+q^{3}+q$
- The right-handed trefoil has Jones polynomial $-q^{-4}+q^{-3}+q^{-1}$
- Thus, they are different

Thank you for your attention!

I hope that was of some help.

