What is...the bracket polynomial?

Or: Jones and co.

- \blacktriangleright The bracket polynomial $\langle _ \rangle$ is a polynomial associated to a knot projection
- ▶ It is defined using a linear relation
- ▶ The linear relation involves the three ways to connect four points

On the back of an envelope

- The definition of $\langle _ \rangle$ gets rid of all crossings
- \blacktriangleright Computing \langle_\rangle is therefore easy
- ▶ This is not recursive as the calculation of the Alexander–Conway polynomial

A unique solution

- ► Idea there should be a relation among the three ways to connect four points
- Playing with Reidemeister moves gives a unique solution
- ► We get an invariant by construction

The bracket polynomial $\langle _ \rangle \in \mathbb{Z}[A, A^{-1}]$ is a knot invariant up to Reidemeister I:

- ▶ A scaling of $\langle _ \rangle$ (and changing variables $q = A^2$) gives the Jones polynomial
- ▶ The Jones polynomial changed knot theory drastically
- Among other things, Vaughan Jones was awarded the fields medal in 1990 for the discovery of the Jones polynomial

- The left-handed trefoil has Jones polynomial $-q^4 + q^3 + q$
- ▶ The right-handed trefoil has Jones polynomial $-q^{-4} + q^{-3} + q^{-1}$
- Thus, they are different

Thank you for your attention!

I hope that was of some help.