What are...knot groups?

Or: Never forget the complement

Everything except the knot

▶ Think of a knot $K \subset S^3$ as an embedding of a solid torus Thickening

▶ The knot complement is the 3d space $X_{\kappa} = S^3 \setminus int(\kappa)$

Example X_{unknot} is a solid torus (think of \mathbb{R}^3 without the z axis)

The knot group topologically

- ▶ The knot group $\pi_1(K)$ is $\pi_1(X_K)$
- $\pi_1(K)$ is thus generated by loops in the knot complement
- ▶ $\pi_1(K)$ is a strong knot invariant

The knot group algebraically

$$\pi_1({\mathcal K})=\langle {\mathsf a},{\mathsf b},{\mathsf c}|{\mathsf a}{\mathsf b}={\mathsf c}{\mathsf a},{\mathsf b}{\mathsf c}={\mathsf a}{\mathsf b},{\mathsf c}{\mathsf a}={\mathsf b}{\mathsf c}
angle\cong\langle {\mathsf a},{\mathsf b}|{\mathsf a}{\mathsf b}{\mathsf a}={\mathsf b}{\mathsf a}{\mathsf b}
angle$$

• Define $\pi_1(K)$ (of a projection) as generated by arcs in the projection modulo

• Wirtinger The algebraic $\pi_1(K)$ is the topological $\pi_1(K)$ up to isomorphism

Define the knot group topologically or algebraically

The knot group is a knot invariant

Both definitions agree up to isomorphism

- The topological incarnation is clearly a knot invariant but it is unclear how to compute it
- The algebraic incarnation is clearly computable but it is unclear why it is a knot invariant
- ► Hence, identifying them is key
- The knot complement $X_{\mathcal{K}}$ itself is even better:

"Two knots/mirrors are the same \Leftrightarrow their knot complements are the same"

Warning: this is not true for links

Left = right-handed trefoil? No idea...

- ▶ The left-handed trefoil has knot group $\langle a, b | bab = aba \rangle$ (the braid group B_3)
- The right-handed trefoil has knot group $\langle a, b | bab = aba \rangle$ (the braid group B_3)

Thus, we still can't tell them apart

Thank you for your attention!

I hope that was of some help.