What is...the knot genus?

Or: Minimal surfaces and knots

Seifert's algorithm

- For a given (oriented) knot diagram:
- Replace all crossings by smoothings as above
- Obtain discs
- Connect the discs by bands as above
- Seifert's algorithm gives a surface bounding our knot

Minimal surfaces

- These Seifert surfaces are minimal area while bounding the knot
- These arise via soap films
- This "proves" they exist

The genus of a knot - almost

- $m=\#$ components, $d=\#$ crossings, $f=\#$ circles
- The genus of a knot projection is

$$
g=\frac{1}{2}(2+d-f-m)
$$

For completeness: A formal statement

Define the genus of a knot as the minimum of g over all projections
The genus is a knot invariant

- Warning Seifert's algorithm for a fixed diagram might not give the minimal answer
- Genus $=0 \Leftrightarrow$ the knot is trivial

Warning: this fails for links

- The degree of the Alexander polynomial is a lower bound for $2 \times$ genus (knots only)

- The left-handed trefoil has genus one
- The right-handed trefoil has genus one
- Thus, we still can't tell them apart

Thank you for your attention!

I hope that was of some help.

