What is...the Alexander polynomial?

Or: Alexander-Conway skein calculus

$$
28
$$

Skein theory

- Skein theory Force a local relation onto crossings, e.g.

$$
\nabla\left(L_{+}\right)-\nabla\left(L_{-}\right)=q \nabla\left(L_{0}\right)
$$

- Either L_{+}or L_{-}are easier, and L_{0} clearly is easier \Rightarrow should give a recursion

A recursively defined polynomial

Computing ∇ of the trefoil

- Say ∇ (unknot) $=1$ and ∇ (easier) $=q$
- Then $\nabla($ trefoil $)=\nabla($ unknot $)+q \nabla($ easier $)=1+q^{2}$

For completeness: A formal statement

The polynomial $\nabla\left(_\right) \in \mathbb{Z}[q]$ defined by
(i) ∇ (unknot) $=1$ Normalization
(ii) $\nabla\left(L_{+}\right)-\nabla\left(L_{-}\right)=q \nabla\left(L_{0}\right)$ recursion
is a well-defined knot invariant

- $\nabla\left(_\right)$is called the Conway polynomial
- Alexander original polynomial $\Delta\left(_\right) \in \mathbb{Z}\left[q, q^{-1}\right]$ is a rescaling of $\left.\nabla()^{\prime}\right)$
- The Alexander polynomial is relatively strong, e.g.

- The left-handed trefoil L has $\nabla(L)=1+q^{2}$
- The right-handed trefoil R has $\nabla(R)=1+q^{2}$
- Thus, we still can't tell them apart

Thank you for your attention!

I hope that was of some help.

