What is...the Alexander polynomial?

Or: Alexander-Conway skein calculus

Flipping crossings

- Theorem The flipping crossing operation can trivialize every knot
- Proof Produce a helix

►

Idea Use this somehow

Skein theory

Skein theory Force a local relation onto crossings, e.g.

$$\nabla(L_+) - \nabla(L_-) = q \nabla(L_0)$$

▶ Either L_+ or L_- are easier, and L_0 clearly is easier \Rightarrow should give a recursion

A recursively defined polynomial

Computing ∇ of the trefoil

• Say $\nabla(\mathsf{unknot}) = 1$ and $\nabla(\mathsf{easier}) = q$

• Then $\nabla(\text{trefoil}) = \nabla(\text{unknot}) + q\nabla(\text{easier}) = 1 + q^2$

For completeness: A formal statement

The polynomial $abla(\underline{\ })\in\mathbb{Z}[q]$ defined by

(i) $\nabla(unknot) = 1$ Normalization

(ii)
$$\nabla(L_+) - \nabla(L_-) = q \nabla(L_0)$$
 recursion

is a well-defined knot invariant

- ▶ $\nabla(_)$ is called the Conway polynomial
- ▶ Alexander original polynomial $\Delta(_) \in \mathbb{Z}[q, q^{-1}]$ is a rescaling of $\nabla(_)$
- ▶ The Alexander polynomial is relatively strong, *e.g.*

Left = right-handed trefoil? No idea...

- The left-handed trefoil L has $\nabla(L) = 1 + q^2$
- The right-handed trefoil R has $\nabla(R) = 1 + q^2$

Thus, we still can't tell them apart

Thank you for your attention!

I hope that was of some help.