What is...the knot determinant?

Or: Enter, linear algebra

Knot colorings

- Colorability is an intuitive and good knot invariant
- Problem A priori it is not easy to decide whether a knot is n-colorable
- Idea Linear algebra should give an algorithm to decide n-colorabtlity

A matrix for a projection

C_{1}

- Form a matrix M_{K} with \# crossings rows and \# segments columns
- Contribution of segment c

$$
\rightsquigarrow+2,
$$

Knot determinant

- The determinant of M_{K}-one row/column is called the knot determinant
- Note that the determinant depends on the projection

For completeness: A formal statement

The knot determinant of some projection is divisible by n odd \Leftrightarrow
the knot determinant of any projection is divisible by n odd \Leftrightarrow
the knot is n-colorable

- This gives an algorithm to check n-colorability
- Example The figure eight knot is only 5-colorable:

$$
\text { red }=0, \text { blue }=2, \text { green }=1, \text { black }=3
$$

- The left-handed trefoil has matrix $\left(\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right)$, so det=3
- The right-handed trefoil has matrix $\left(\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right)$, so $\operatorname{det}=3$
- Thus, we still can't tell them apart; for no n

Thank you for your attention!

I hope that was of some help.

