What is...the knot determinant?

Or: Enter, linear algebra

Knot colorings

► Colorability is an intuitive and good knot invariant

• Problem A priori it is not easy to decide whether a knot is *n*-colorable

▶ Idea Linear algebra should give an algorithm to decide *n*-colorabtlity

A matrix for a projection

▶ Form a matrix M_K with # crossings rows and # segments columns

► Contribution of segment c C $\rightarrow +2$, $\rightarrow -1$, $\rightarrow -1$, $\rightarrow 0$

Knot determinant

2 | -1

2

-1

det of the projection: 3

- ▶ The determinant of M_K -one row/column is called the knot determinant
- ▶ Note that the determinant depends on the projection

Left = right-handed trefoil? No idea...

- ► The left-handed trefoil has matrix $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$, so det=3
- ► The right-handed trefoil has matrix $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$, so det=3

Thus, we still can't tell them apart; for no n

Thank you for your attention!

I hope that was of some help.