What is...the h-cobordism theorem in action?

Or: Towards the Poincaré conjecture

Reminder: The Poincaré conjecture (PC)

- ▶ PC Every homotopy *n* sphere is homeomorphic to the *n* sphere
- ▶ For n = 3 this is "Every closed 3mfd with trivial fundamental group is homeomorphic to the 3 sphere
- ▶ We will sketch a proof for $n \neq 3, 4$ using e.g. the h-cobordism theorem

Let us prove the PC!

- Dims 1 and 2 In these cases we can use classification results
- Dims 3 and 4 Too hard for me
- Dims \geq 5 The h-cobordism theorem applies

Poking twice

- ▶ Take two embedded disjoint discs $D_1, D_2 \hookrightarrow M$ in a homotopy *n* sphere *M*
- Poke and get a cobordism $W = M \setminus int(D_1) \coprod int(D_2)$
- "Classic algebraic topology methods" show that W is an h-cobordism

Since W is an h-cobordism we get $(W; \partial D_1, \partial D_2) \cong (\partial D_1 \times [0, 1], \partial D_1 \times \{0\}, \partial D_1 \times \{1\})$

Note here that $\partial D_1 \times [0,1] \cong S^{n-1} \times [0,1]$, so we get $f \colon S^{n-1} \xrightarrow{\cong} S^{n-1}$

 $f: S^{n-1} \xrightarrow{\cong} S^{n-1}$ extends to a homeomorphism $F: D^n \xrightarrow{\cong} D^n$ (next slide)

Fill in the discs and use F to get that M is homeomorphic to S^n

Note that this only works for n ≥ 5 as the *h*-cobordism theorem requires that
For n = 3, 4 different techniques are needed

Alexander's trick

▶ Two homeomorphism $f,g: D^n \to D^n$ that agree on $\partial D^n = S^{n-1}$ are isotopic

► Or backwards Knowing $f: S^{n-1} \xrightarrow{\cong} S^{n-1}$ gives a unique $F: D^n \xrightarrow{\cong} D^n$

Thank you for your attention!

I hope that was of some help.