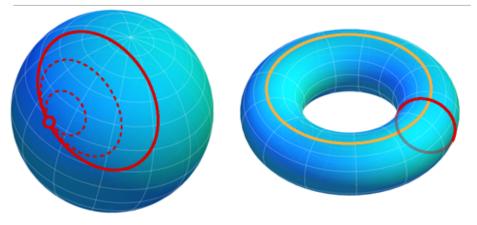

What is...the Poincaré conjecture?

Or: Spheres will be spheres

- ► The "real kick off" was Poincarés paper Analysis situs
- ▶ In this work Poincaré created "essentially all traditional notions" of topology


Poincaré's big "conjecture"

• A closed 3 mfd with trivial fundamental group is homeomorphic to S^3

- ▶ In the beginning, there was no conjecture as "this is obvious"
- ► Later it was stated with trivial homology but we have already seen Poincaré spheres; then it took the form above but formulated as a question

Progress is always slow...

- ► The existence of homology spheres shows that 3d are more complicated than 2d (Poincaré's conjecture is well-known for 2d)
- ▶ Turns out that it is even much more complicated
- ► Perelman published a proof outline in 2002–2003, a hundred years after the conjecture was made

Generalized Poincaré conjecture

Every homotopy n sphere is isomorphic to S^n where *e.g.*:

- Isomorphic could means as topological manifolds
- Isomorphic could means as smooth manifolds
- ▶ For $n \le 2$ this is well-known
- This was proven by Smale for n > 3 (topological)

ANNALS OF MATHEMATICS Vol. 74, No. 2, September, 1961 Printed in Japan

GENERALIZED POINCARÉ'S CONJECTURE IN DIMENSIONS GREATER THAN FOUR

BY STEPHEN SMALE*

(Received October 11, 1960) (Revised March 27, 1961)

We discuss the proof in a later video

▶ The topological version for n = 3 was proven by Hamilton–Perelman

The smooth case is different

Dimension	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Smooth types	1	1	1	≥1	1	1	28	2	8	6	992	1	3	2	16256	2	16	16	523264	24

- ▶ The *e.g.* n = 7 case of the smooth Poincaré conjecture is wrong
- n = 4 case of the smooth Poincaré conjecture is widely open

Thank you for your attention!

I hope that was of some help.