What is...a Heegaard diagram?

Or: Handle diagrams

Heegaard splitting

► Heegaard splitting $M = H \cup H'$ for handlebodies H, H' with $H \cap H' = \delta H = \delta H'$

- Exists for all closed orientable 3mfds
- Goal Describe it combinatorially

Gluing along the boundary

- The boundaries δH and $\delta H'$ are surfaces S of genus g
- Similarly as for Dehn surgery the gluing along these boundaries is determined by where the "meridians" go
- ► It thus suffices to specify curves $\beta_1, ..., \beta_g$ for $\delta H'$, or split into two and we specify $\alpha_1, ..., \alpha_g$ for δH as well

Heegaard diagrams

► A Heegaard diagram consists of two *g*-tuples of curves α_i, β_i in *S*

- Each g-tuple must consist of disjoint simple closed curves whose homology classes are linearly independent
- ▶ The α_i, β_i are the attaching curves for δH and $\delta H'$

Heegaard diagrams describe closed orientable 3mfds

For g = 1 we can also draw diagrams in a plane minus two discs; to get back S compactify by one point at infinity and glue the two boundary circles together
▶ Here is a Heegaard diagram of S³:

• Here is a Heegaard diagram of $S^1 \times S^2$:

More Heegaard diagrams

• Above Two Heegaard diagrams of L(3,1)

• Below A Heegaard diagram of genus g = 2

Thank you for your attention!

I hope that was of some help.