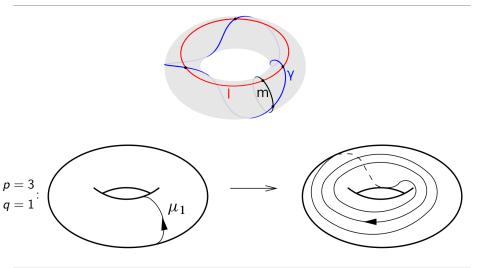
What are...lens spaces?

Or: The birth of geometric topology!?

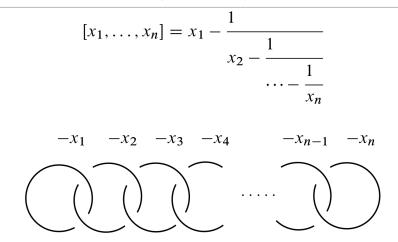
The meridian winds around



• Dehn surgery Glue the meridian to $[\gamma] = a \cdot [m] + b \cdot [l]$

▶ The lens space L(p,q), p,q coprime, is determined by (-q,p)

Lens spaces and Hopf links

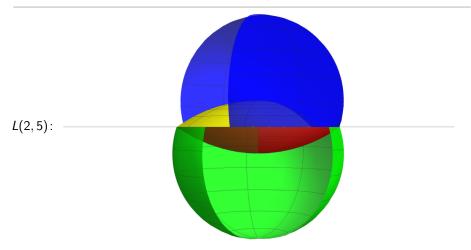


► L(p,q) Write $p/q = [x_1, ..., x_n]$ as a continued fraction

▶ The lens space L(p,q) is given by surgery along x_i framed Hopf links

• Example L(5,2); $5/2 = [3,2] = 3 - 1/2 \Rightarrow (-3,-2)$ framed Hopf link

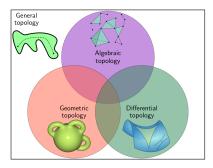
Quotients of spheres



- ▶ Take the map $S^3 \to S^3$ given by $(z_1, z_2) \mapsto (e^{2\pi i/p} \cdot z_1, e^{2\pi i q/p} \cdot z_2)$
- The quotient of S^3 modulo this map is L(p,q)

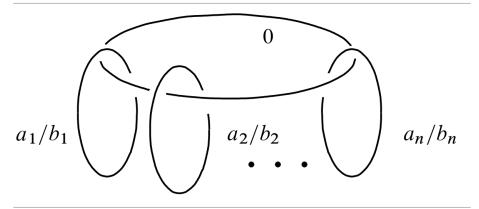
•
$$L(2,1) \iff \mathbb{R}P^3 = S^3/\text{antipodal points}$$

The spaces L(p, q) the first known examples of 3mfds which were not determined by their homology and fundamental group alone Birth of geometric topology!?



- ► L(5,1) and L(5,2) are not homeomorphic even though they have isomorphic fundamental groups and the same homology
- ▶ L(7,1) and L(7,2) are not homeomorphic even though they have the same homotopy type

Seifert manifolds



- ► Take coprime (a_i, b_i); the Seifert manifold M(a₁/b₁, ..., a_n/b_n) is obtained by the above surgery
- ► Express a_i/b_i as a continued fraction and replace any a_i/b_i framing by a chain of Hopf links as before Generalized Lens spaces

► $\Sigma(p, q, r)$ from the previous video corresponds to $M(p/b_1, q/b_2, r/b_3)$ with $qrb_1 + prb_2 + pqb_3 = 1$

Thank you for your attention!

I hope that was of some help.