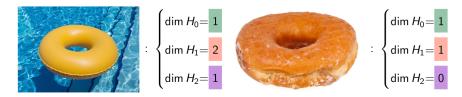
What are...homology spheres?

Or: Spheres, but not really ...

Homology counts holes

The torus T and the solid torus T^s



- ▶ A zero dimensional hole dim H_0 is a connected component
- \blacktriangleright A one dimensional hole dim H_1 is the number of necklaces you can put it on
- \blacktriangleright A two dimensional hole dim H_2 is the number of plugs needed to inflate it

Eric Weisstein "A hole in a mathematical object is a topological structure which prevents the object from being continuously shrunk to a point."

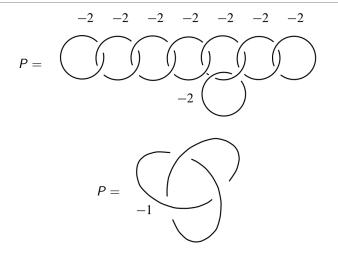
I use homology is a black box - it is some algebraic datum associated to a space

Spheres algebraically



- \triangleright S^n is among the easiest nontrivial spaces; its homology is essentially trivial
- ► For dim 2: "homology of manifold X = homology of $S^{2"}$ \Leftrightarrow " $X = S^{2"}$
 - Question What about 3d?

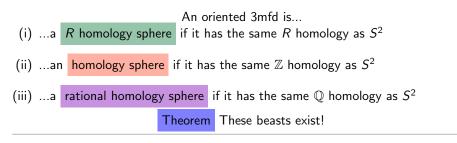
Poincaré's example



► Surgery around the above knots gives Poincaré's homology sphere P

► P is very far from a sphere, e.g. $|\pi_1(S^3)| = 1$ but $|\pi_1(P)| = 120$

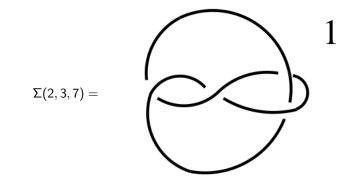
For completeness: A formal statement



 \blacktriangleright Surgery on a knot with framing ± 1 gives a homology sphere

• Lens spaces L(p, q) are rational homology spheres

A family of these beasts



- ▶ Take $p, q, r \in \mathbb{N}$ pairwise relatively prime
- ► The intersection Σ(p, q, r) of a small 5 sphere around 0 with x^p + y^q + z^r = 0 is a homology sphere Seifert homology spheres / Brieskorn manifolds
- $\Sigma(2,3,5)$ is the Poincaré sphere
- ▶ There is a very explicit way of defining these will be discussed next time

Thank you for your attention!

I hope that was of some help.