What is...the linking matrix?

Or: Kirby calculus on matrices

Gauss' linking number

Linking matrix

▶ Fix K_1 to K_n , consider them as framed by $f_i \in \mathbb{Z}$

• Linking matrix $A = (a_{ij})_{i,j}$ is the nxn matrix with

$$\mathsf{a}_{ij} = egin{cases} f_i & ext{if } i=j \ lk(K_i,K_j) & ext{if } i
eq j \end{cases}$$

Kirby and linking

▶ The Kirby move I changes A by adding an ± 1 entry

► The Kirby move II changes A by adding (or subtracting) the jth row to (from) the ith row and the jth column to (from) the ith column

The linking matrix A is...

- (i) ...an invariant of the K_1 to K_n seen as framed
- (ii) ...an invariant of the 3mfd up to the matrix Kirby moves :
 - The Kirby move I changes A by adding an ± 1 entry
 - ► The Kirby move II changes A by adding (or subtracting) the jth row to (from) the ith row and the jth column to (from) the ith column

A can be used to prove that every closed, orientable, connected 3mfd can be obtained by Dehn surgery with only even framing

▶ Take $B = A \mod 2$ and solve $B(x_1, ..., x_n) = (b_{11}, ..., b_{nn})$ Linear algebra

► Solutions are called characteristic subknots

▶ Getting rid of these via Kirby moves shows the "even theorem"

Thank you for your attention!

I hope that was of some help.