What is...the linking matrix?

Or: Kirby calculus on matrices

Gauss' linking number

- Positive and negative crossings

- Linking number $\mathbb{I k}\left(K_{1}, K_{2}\right)=\frac{1}{2}$ (\# of positive $-\#$ of negative crossings)

Linking matrix

- Fix K_{1} to K_{n}, consider them as framed by $f_{i} \in \mathbb{Z}$
- Linking matrix $A=\left(a_{i j}\right)_{i, j}$ is the $n \times n$ matrix with

$$
a_{i j}= \begin{cases}f_{i} & \text { if } i=j \\ l k\left(K_{i}, K_{j}\right) & \text { if } i \neq j\end{cases}
$$

Kirby and linking

$$
\mathscr{L} \quad \mapsto \quad \mathscr{L} \quad \cup\left(\begin{array}{rrr}
\pm 1 & & 0 \\
& & \\
& & \\
& & 0 \\
0 & \cdots & 0
\end{array}\right)
$$

- The Kirby move I changes A by adding an ± 1 entry
- The Kirby move II changes A by adding (or subtracting) the jth row to (from) the ith row and the jth column to (from) the ith column

For completeness: A formal statement

The linking matrix A is...
(i) ...an invariant of the K_{1} to K_{n} seen as framed
(ii) ...an invariant of the 3mfd up to the matrix Kirby moves

- The Kirby move I changes A by adding an ± 1 entry
- The Kirby move II changes A by adding (or subtracting) the jth row to (from) the ith row and the jth column to (from) the ith column
A can be used to prove that every closed, orientable, connected 3mfd can be obtained by Dehn surgery with only even framing
same 3 mfd :

Getting rid of odd bits

- Take $B=A \bmod 2$ and solve $B .\left(x_{1}, \ldots, x_{n}\right)=\left(b_{11}, \ldots, b_{n n}\right)$ Linear algebra
- Solutions are called characteristic subknots
- Getting rid of these via Kirby moves shows the "even theorem"

Thank you for your attention!

I hope that was of some help.

