Or: Kirby calculus on matrices



Gauss’ linking number
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» Positive and negative crossings

= LR = X

» Linking number lk(Ky, K3) = % (# of positive — # of negative crossings)



Linking matrix
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» Fix Kj to K, consider them as framed by f; € Z

» Linking matrix A = (ajj);j is the nxn matrix with
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Kirby and linking
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» The [Kirby move | changes A by adding an £1 entry
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» The Kirby move Il changes A by adding (or subtracting) the jth row to
(from) the ith row and the jth column to (from) the ith column



For completeness: A formal statement
The linking matrix A is...
(i) ...an linvariant of the Kj to K, seen as framed

(ii) ...an 'invariant of the 3mfd up to the 'matrix Kirby moves :
» The Kirby move | changes A by adding an +1 entry

» The Kirby move Il changes A by adding (or subtracting) the jth row to
(from) the ith row and the jth column to (from) the ith column

A can be used to prove that every closed, orientable, connected 3mfd can be

obtained by Dehn surgery with only _
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Getting rid of odd bits
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» Take B = Amod 2 and solve B.(x1, ..., %,) = (b11, ..., ban) | Linear algebra

» Solutions are called |characteristic subknots

» Getting rid of these via Kirby moves shows the “even theorem"



| hope that was of some help.



