What is...the chromatic number of a surface?

Or: Graphs on surfaces

Graph embeddings

 \blacktriangleright The book embedding shows that any graph embeds into \mathbb{R}^3

- For a fixed surface S this is however not true
 - Question What can we say about graph embeddings in *S*?

Graphs on surfaces

- ► Study embeddings of graphs on surfaces
- ► To find the minimal surface a given graph embeds into is very hard
- \blacktriangleright Let us do the opposite: fix a surface and consider graph embedded into it

Coloring embedded graphs

► Every graph embedded in a surface *S* admits the notion of faces

• Question What is the minimal number C(S) of colors needed to color any graph in S?

▶ The four color theorem is the most famous instance of this

For a closed connected surface $S \neq (S^2 \text{ or Klein bottle})$ we have

$$C(S) = \left\lfloor \frac{1}{2} \left(7 + \sqrt{49 - 24\chi(S)} \right) \right\rfloor$$

where $\chi(S)$ is the Euler characteristic of S

► Heawood's number is almost always perfect:

Surface	Heawood's bound	real $C(S)$
S^2	6	4
\mathbb{K}	7	6
$S eq S^2, \mathbb{K}$	$c = \left\lfloor \frac{7 + \sqrt{49 - 24\chi(S)}}{2} \right\rfloor$	с

For a torus $\chi(S) = 0$ so we get C(S) = 7:

The two missing cases

For S² "=" plane the correct number is C(S) = 4 and this is really difficult to prove − four color theorem

▶ For the Klein bottle the correct number is C(S) = 6 and this due to Franklin ~1930

Thank you for your attention!

I hope that was of some help.