What is...the chromatic number of a surface?

Or: Graphs on surfaces

Graph embeddings

- The book embedding shows that any graph embeds into \mathbb{R}^{3}
- For a fixed surface S this is however not true
- Question What can we say about graph embeddings in S ?

Graphs on surfaces

- Study embeddings of graphs on surfaces
- To find the minimal surface a given graph embeds into is very hard
- Let us do the opposite: fix a surface and consider graph embedded into it

Coloring embedded graphs

- Every graph embedded in a surface S admits the notion of faces
- Question What is the minimal number $C(S)$ of colors needed to color any graph in S ?
- The four color theorem is the most famous instance of this

For a closed connected surface $S \neq\left(S^{2}\right.$ or Klein bottle) we have

$$
C(S)=\left\lfloor\frac{1}{2}(7+\sqrt{49-24 \chi(S)})\right\rfloor
$$

where $\chi(S)$ is the Euler characteristic of S

- Heawood's number is almost always perfect:

Surface	Heawood's bound	real $C(S)$
S^{2}	6	4
\mathbb{K}	7	6
$S \neq S^{2}, \mathbb{K}$	$c=\left\lfloor\frac{7+\sqrt{49-24 \chi(S)}}{2}\right\rfloor$	c

- For a torus $\chi(S)=0$ so we get $C(S)=7$:

The two missing cases

- For S^{2} " $=$ " plane the correct number is $C(S)=4$ and this is really difficult to prove - four color theorem
- For the Klein bottle the correct number is $C(S)=6$ and this due to Franklin ~ 1930

Thank you for your attention!

I hope that was of some help.

