What are...words for surfaces?

Or: How to "read" surfaces

From a polygon to a word

- A polygon as above $4 \rightarrow$ a surface
- Reading counterclockwise gives the surface word

Words on a necklace

$$
\begin{gathered}
a b c \\
= \\
c a b \\
= \\
b c a
\end{gathered}
$$

- The starting point for the reading should not give different surfaces
- Words give the same surface if they are related by a cyclic permutation
- Said differently, words live on a necklace

A few more relations

- Non paired edges in a row can be contracted, e.g. $a b c=a$ for non paired a, b, c
- "In a row" is meant for the same vertices
- The vertices can be spread over the word

For completeness: A formal statement

Every closed surface $S \neq S^{2}$ is of the form

$$
S \cong\left(\#^{h} T\right) \#\left(\#^{p} \mathbb{R} P^{2}\right)
$$

The standard words for closed surfaces are

For non-closed surfaces use the same and the previous relations

The general classification

Every surface S is of the form

$$
S \cong S^{2} \#\left(\#^{d} D\right) \#\left(\#^{h} T\right) \#\left(\#^{p} \mathbb{R} P^{2}\right)
$$

d punctures, h handles, p projective planes

From left to right:

- A sphere with a puncture
- A sphere with three handles
- A sphere with a projective plane

Thank you for your attention!

I hope that was of some help.

