What are...surfaces?

Or: Spheres and friends

Locally a disc - again

- Surface without boundary "=" every point that has a neighborhood homeomorphic to a disc
- \blacktriangleright Surface with boundary "=" as before but with potential boundary points
- ▶ Boundary point = local neighborhoods homeomorphic to a half-disc
- ▶ The torus = swim ring is a closed (without boundary) surface
- ► A pair of pants is a surface with boundary

Many rectangles

- \blacktriangleright Listing all surfaces is hopeless, e.g. there are already ∞ many "rectangles"
- $\blacktriangleright\,$ But all of these are the same surface up to $\cong\,$
- Goal (ambitious?) Classify surfaces up to \cong

More surfaces

- ▶ There are way more surfaces: sphere, torus, $\mathbb{R}P^2$, Klein bottle, ...
- ▶ It is not even clear whether they are homeomorphic or not
- ► We need some way of listing surfaces efficiently

A closed surfaces S is a topological spaces such that:

- (i) Every $x \in S$ has an open neighborhood \cong to ($X \subset$ Euclidean plane) open Discs and S is compact
- (ii) S is nonempty, second-countable, and Hausdorff Technical assumptions

A surfaces S with boundary is a topological spaces such that:
(i) Every x ∈ S has an open neighborhood ≃ to (X ⊂closure of upper half-plane) open Discs or half-discs

(ii) S is nonempty, second-countable, and Hausdorff Technical assumptions

Non-examples

- The top has a cusp \Rightarrow not a surface
- \blacktriangleright The bottom has three-fold singularity \Rightarrow not a surface

Thank you for your attention!

I hope that was of some help.