What are...surfaces?

Or: Spheres and friends

Locally a disc - again

- Surface without boundary " $=$ " every point that has a neighborhood homeomorphic to a disc
- Surface with boundary " $=$ " as before but with potential boundary points
- Boundary point = local neighborhoods homeomorphic to a half-disc
- The torus = swim ring is a closed (without boundary) surface
- A pair of pants is a surface with boundary

Many rectangles

parts of coordinate planes:

- Listing all surfaces is hopeless, e.g. there are already ∞ many "rectangles"
- But all of these are the same surface up to \cong
- Goal (ambitious?) Classify surfaces up to \cong

More surfaces

- There are way more surfaces: sphere, torus, $\mathbb{R} P^{2}$, Klein bottle, ...
- It is not even clear whether they are homeomorphic or not
- We need some way of listing surfaces efficiently

For completeness: A formal definition

A closed surfaces S is a topological spaces such that:
(i) Every $x \in S$ has an open neighborhood \cong to ($X \subset$ Euclidean plane) open Discs and S is compact
(ii) S is nonempty, second-countable, and Hausdorff Technical assumptions

A surfaces S with boundary is a topological spaces such that:
(i) Every $x \in S$ has an open neighborhood \cong to ($X \subset$ closure of upper half-plane) open Discs or half-discs
(ii) S is nonempty, second-countable, and Hausdorff Technical assumptions

Examples

Left closed
Right with boundary

- The top has a cusp \Rightarrow not a surface
- The bottom has three-fold singularity \Rightarrow not a surface

Thank you for your attention!

I hope that was of some help.

