## What are...homeomorphisms?

Or: Rubber geometry

The square is the circle


- A continuous map from the square to the circle: $(x, y) \mapsto\left(x / \sqrt{x^{2}+y^{2}}, y / \sqrt{x^{2}+y^{2}}\right)$
- A continuous map from the circle to the square: $(x, y) \mapsto\left(x /\left|x^{2}+y^{2}\right|, y /\left|x^{2}+y^{2}\right|\right)$
- These maps are inverses
- Hence, from the viewpoint of topology square $=$ circle


## An interval is a line



- A continuous map from $(-\pi / 2, \pi / 2)$ to $\mathbb{R}: x \mapsto \tan (x)$
- A continuous map from $\mathbb{R}$ to $(-\pi / 2, \pi / 2): x \mapsto \arctan (x)$
- These maps are inverses
- Hence, from the viewpoint of topology $(-\pi / 2, \pi / 2)=\mathbb{R}$

Like rubber


- Idea In topology one identifies spaces up to continuous-rubber deformations
- What is not allowed is tearing
- Writing down explicit maps is unpractical and one usually does not do it

Two topological spaces $X$ and $Y$ are homeomorphic if:
(i) There exists a continuous map $f: X \rightarrow Y$
(ii) There exists a continuous map $g: Y \rightarrow X$
(iii) These maps are inverses We write $X \cong Y$ for homeomorphic spaces

- Homeomorphism is the most used equivalence relation in topology
- But sometimes one needs different notions, as e.g. homeomorphisms do not detect embeddings:


The circle is not an interval


- $x \mapsto(\cos (x), \sin (x))$ is a continuous bijection from $[0,2 \pi)$ to the circle
- The inverse is not continuous
- The circle is not homeomorphic to an interval (strictly speaking we need some invariant to check that)

Thank you for your attention!

I hope that was of some help.

