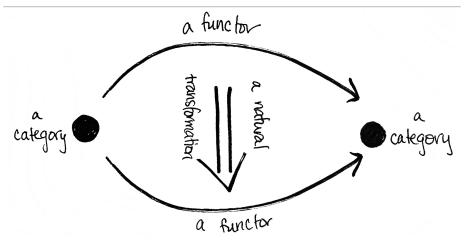
What are...natural transformations?

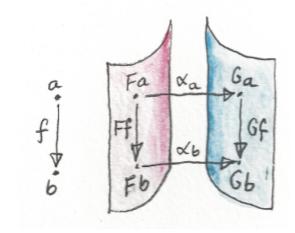
Or: Maps between functors

The whole video on one slide



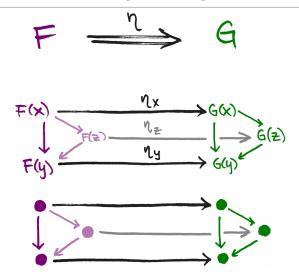
- Odim Categories Objects
- Idim Functors Arrows
- 2dim Natural transformations (nat trafo) Arrows between arrows

Connecting diagrams



- ▶ A nat trafo α : $F \Rightarrow G$ should be the correct map between functors
- ► Functors associate Lines→Lines
- ▶ α should associate Lines→Squares

Connecting fancier diagrams

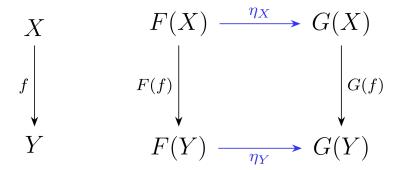


- ► Functor About commuting diagrams
- ► Nat trafo About commuting polytopes

A nat trafo $\eta: F \Rightarrow G$ is a mapping that:

► associates each object X in C to an arrow $\eta_X : F(X) \to G(X)$ in D Points Lines

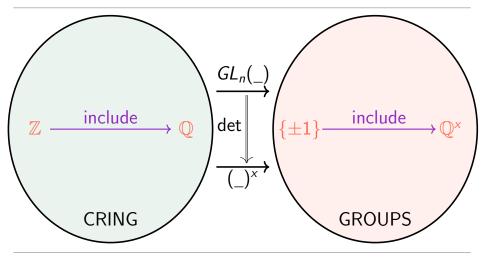
• such that $\eta_Y F(f) = G(f)\eta_X$ Nat trafo square



Here $F, G: C \rightarrow D$ are functors with same source and target categories

The tip of the iceberg: the arrow between nat trafos is called modification

The determinant is a nat trafo



► $GL_n(_)$ and $(_)^{\times}$ (group of units) are functors from CRING to GROUPS.

▶ det: $GL_n(_) \Rightarrow (_)^x$ is a nat trafo

▶ Why? det is defined by the same formula for every ring, so det_S $GL_n(f) = f \det_R$

Thank you for your attention!

I hope that was of some help.