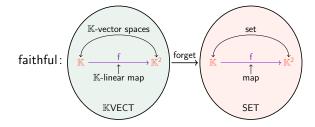

What are...properties of functors?

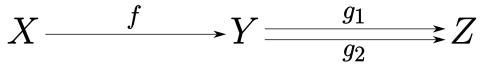
Or: Preserving diagrams

Functors preserve diagrams

Injective



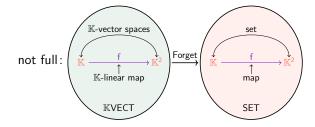
 \blacktriangleright A functor F is faithful if


 $F: \hom_{C}(X, Y) \xrightarrow{f \mapsto F(f)} \hom_{F(C)}(F(X), F(Y))$ is injective

► Faithful \leftarrow monic in CAT but \neq \Rightarrow also needs injective on objects

Example Forget: $\mathbb{K}VECT \rightarrow SET$ is faithful

Surjective

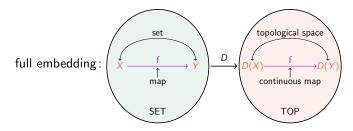


► A functor *F* is full if

 $F: \hom_{C}(X, Y) \xrightarrow{f \mapsto F(f)} \hom_{F(C)}(F(X), F(Y))$ is surjective

Full ⇒ epic in CAT but ∉ I do not know any good characterization of ⇐

Example Forget: $\mathbb{K}VECT \rightarrow SET$ is not full


Any functor *F* satisfies:

- ► F preserves commutative diagrams
- F preserves identities $(f = id \Rightarrow F(f) = id)$
- F preserves isomorphisms (f iso \Rightarrow F(f) iso)

Some functors *F* satisfy:

- ► F is faithful
- ► *F* is an embedding (= faithful and injective on objects)
- ► *F* is full
- ▶ *F* is iso (= fully faithful and bijective on objects)
- *F* reflects identities ($F(f) = id \Rightarrow f = id$)
- *F* reflects isomorphisms (F(f) iso $\Rightarrow f$ iso)
- ► Many more that we will meet

- \blacktriangleright Forget: $\mathbb{K}\mathsf{VECT}\to\mathsf{SET}$ is faithful, but not full or an embedding
- \blacktriangleright Powerset: SET \rightarrow SET is an embedding, but not full
- Demetrization: $MET_c \rightarrow TOP$ is fully faithful, but not an embedding
- Discrete topology $D: SET \rightarrow TOP$ is a full embedding

- Indiscrete topology I: SET \rightarrow TOP is a full embedding
- \blacktriangleright Inclusion functor: $\mathbb{Z}\mathsf{MOD}\to\mathsf{GROUP}$ is a full embedding
- ► Many more that we will meet

Thank you for your attention!

I hope that was of some help.