Or: Applications 2 (category theory in signal processing)



Signal flow graphs (SFG); simplified
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SFGs have three types of signal processing units:
» Coupons multiply inputs by a given number

» Black splits take inputs and produce two copies

» White merges take inputs and produce the sum



SFG and matrices
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» Matrices can be modeled using SFGs
» Actually, the whole symmetric monoidal category KMAT can be modeled

» In particular, we get | matrix multiplication



Matrix multiplication is everywhere
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» The diagrammatic matrix multiplication of SFG is very applicable

» Examples are [analog computers that are used in machine learning

» Here each building block corresponds to some “analog chip”



For completeness: A formal definition
A ‘prop is a symmetric monoidal category on objects N with ® = + on objects

» Props are denoted using string diagrams (traditionally read sideways)
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» SFGs are props with arrow generators
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A presentation for KFdVECT
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» The above is a symmetric monoidal ' generator-relation presentation of KMAT

» Since KMAT is the skeleton of KfdVECT, we get the same for the latter

» This, appropriately formulated, works over any ring R



| hope that was of some help.



