Or: Categories in categories



2-categories were around from the very beginning
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» Eilenberg—Mac Lane introduced categories in ~1945

» The main focus were already functors and nat trafos

» What is a good home for nat trafos?



Higher dimensions

forget 3-arrows The ladder of categories add 3-arrows
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forget 2-arrows add 2-arrows

2 — categories = "arrows between arrows”

1 — categories = usual categories
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forget arrows addjrrows

0 — categories = sets, vector spaces

sii intemaytructure

—1 — categories = cardinals, truth values

» A prototypical example of a set is the set of numbers
» A prototypical example of a category is the category of sets

» A prototypical example of a 2-category is the category of categories



String diagram
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» CAT: objects are categories, arrows are functors, 2-arrows are nat trafos

> - A 2-category should be defined to admit string diagrams

» Warning, this is Poincaré dual to the more standard illustration



For completeness: A formal definition

A 2-category C is a |category C enriched in categories , vaguely meaning:
It has objects and arrows

Each hom¢(X, Y) is a category rather than a set
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» Thus, there are also 2-arrows being “arrows between arrows”

» Arrows can be composed in one direction o, 2-arrows in two directions o,, op
»

Everything is up to natural sets of axioms, most notably:

(wonx) oy (y o 2)
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» Example The 2-category of categories CAT

» Example Every monoidal category is a 2-category with one object

» There is also a weaker notion, but then again a strictification result



Cobordisms again

» 2COB: objects are points, arrows are lines, 2-arrows are surfaces

» All axioms in this 2-category are |visually clear ;-)



| hope that was of some help.



