What are...2-categories?

Or: Categories in categories

GENERAL THEORY OF NATURAL EQUIVALENCES

BY

SAMUEL EILENBERG AND SAUNDERS MACLANE

Contents

D----

	rage
Introduction	231
I. Categories and functors	237
1. Definition of categories.	237
2. Examples of categories	239
3. Functors in two arguments	241
4. Examples of functors	242
5. Slicing of functors	245
6. Foundations	246
II. Natural equivalence of functors	248
7. Transformations of functors	248
8. Categories of functors.	250
9. Composition of functors	250
10. Examples of transformations	251
11. Groups as categories	256
12. Construction of functors by transformations	257
13. Combination of the arguments of functors	258

- $\blacktriangleright\,$ Eilenberg–Mac Lane introduced categories in ${\sim}1945$
- ▶ The main focus were already functors and nat trafos

What is a good home for nat trafos?

Higher dimensions

- ► A prototypical example of a set is the set of numbers
- ► A prototypical example of a category is the category of sets
- ► A prototypical example of a 2-category is the category of categories

String diagram

- ► CAT: objects are categories, arrows are functors, 2-arrows are nat trafos
- ► Slogan A 2-category should be defined to admit string diagrams
- ► Warning, this is **Poincaré dual** to the more standard illustration

A 2-category C is a category C enriched in categories , vaguely meaning:

- It has objects and arrows
- Each hom_C(X, Y) is a category rather than a set
- ▶ Thus, there are also 2-arrows being "arrows between arrows"
- ► Arrows can be composed in one direction o, 2-arrows in two directions o_v, o_h
- Everything is up to natural sets of axioms, most notably:

- Example The 2-category of categories CAT
- **Example** Every monoidal category is a 2-category with one object
- ▶ There is also a weaker notion, but then again a strictification result

Cobordisms again

- ▶ 2COB: objects are points, arrows are lines, 2-arrows are surfaces
- ► All axioms in this 2-category are visually clear ;-)

Thank you for your attention!

I hope that was of some help.