Or: Rigid and pivotal categories



String diagram wish list
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» We want dual objects encoded by orientations
» We want  (co)evaluations encoded by cups/caps

» We want the |zigzag relation
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String diagram consequences
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» We get 'dual arrows as above
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» We get topological rules how to manipulate these diagrams

» We get |diagrammatic proofs| of nontrivial facts



Vector spaces again

ev: XX* = K
(x,y%) = y*(x)

coev: K — (X*)X
1— > x"®x
fdKVECT

» In fdKVECT, the dual vector space is the dual object

» In fdKVECT, (co)evaluations are the usual (co)evaluations

» Seems like we need ' monoidal categories to make this work



For completeness: A formal definition

An object X in a monoidal category C has a [dual X* if:
B There exists (co)evaluation arrows (four variants)

» They satisfy the zigzag relations
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A category is pivotal if all objects have duals

» Duals, if they exist, are unique up to unique isomorphism

> rigid| is a weaker notion where one distinguishes left/right *X/X* duals

» Example The category End(C) is rigid and left/right dual = left/right adjoint



Finally, a planar calculus

Theorem. Two diagrams are equivalent if they are related by scaling

or by a planar isotopy

works for f, g

being (co)evaluations :

» This is a | planar calculus

(D
Y

» Warning This really is planar and not allowed is e.g.
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| hope that was of some help.



