What are...string diagrams, take 2?

Or: Two-dimensional algebra

 $\blacktriangleright \quad 2-cell \quad Draw a category C as a face$

1-cell Draw a functor $F: C \rightarrow D$ as a line

• 0-cell Draw a nat trafo $\eta: F \Rightarrow G$ as a point

No face colors needed!

▶ 1-cell Draw an object $X \in C$ as a line

$$X$$

 $|$
 X

0-cell Draw an arrow $f: X \to Y$ as a point

$$Y$$

 f
 X

Composition

► The usual/categorical composition \circ is vertical stacking

▶ The monoidal product ⊗ is horizontal stacking

For completeness: A formal definition

String diagrams for monoidal categories have...

- \blacktriangleright ...?? represented by a portion of plane, We will see later what $\ref{eq:latence}$ is
- ▶ ...objects represented by strings 1d
- ► ...arrows by coupons 0d
- ▶ ... "evident" composition rules

The prototypical monoidal category is thus 1COB (in some sense):

Theorem. Two diagrams are equivalent if they are related by scaling or by a planar isotopy keeping the upwards orientation

- ► This is not quite a planar calculus not always
- ► This gap is filled by quantum algebra
 - Keywords Rigid and pivotal categories

Thank you for your attention!

I hope that was of some help.