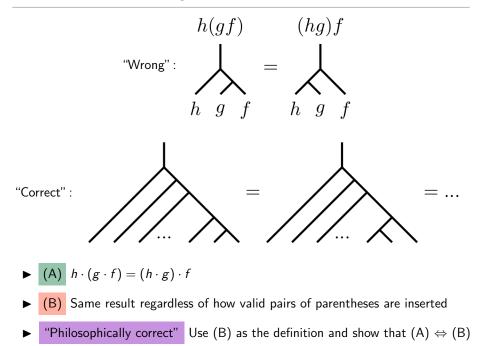
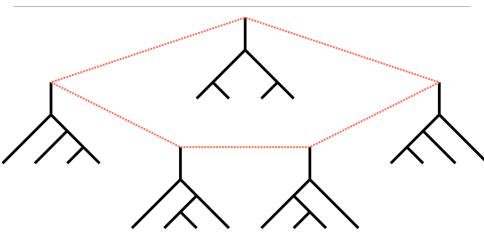
What is...strictification?

Or: MacLane's coherence theorem

A "wrong" and a "correct" definition



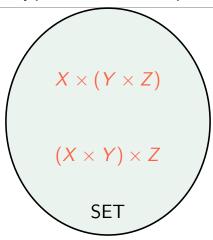
Strategical interlude



• Define a monoid/group/... using $h \cdot (g \cdot f) = (h \cdot g) \cdot f$

- ▶ Show that $h \cdot (g \cdot f) = (h \cdot g) \cdot f$ implies all bracketings Coherence theorem
- ► Forget parenthesis altogether Strictification

Why parenthesis in the first place?



- ► $X \times (Y \times Z) \neq (X \times Y) \times Z$ as sets Set theory is inflexible
- ▶ In order to make SET with $\otimes = \times$ monoidal we need parenthesis
- ► Use an equivalent category and avoid parenthesis Category theory is flexible

A strict monoidal category ($\mathcal{C},\otimes,\mathbb{1}$) consists of

- ► A category C
- A bifunctor \otimes : $C \times C \rightarrow C$ (write $XY = X \otimes Y$)
- A unit object $1 \in C$

such that

(a) associativity holds, i.e. $X(YZ) = (XY)Z, \quad h \otimes (g \otimes f) = (h \otimes g) \otimes f$

(b) the *identity law* holds, *i.e.*

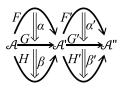
$$\mathbb{1} X = X = X \mathbb{1}, \quad \mathrm{id} \otimes f = f = f \otimes \mathrm{id}$$

Theorem (strictification)

Every monoidal category is monoidally equivalent to a strict monoidal category

Some examples

Name	\otimes	Strict?	Strictification
SET	×	No	S(SET)
CAT	×	No	S(CAT)
1COB	Juxtaposition	Yes	1COB
nCOB	Juxtaposition	Yes	nCOB
⊮VECT	\otimes	No	S(KVECT)
KVECT	\oplus	No	S(KVECT)
END(C)	0	Yes	END(C)



▶ Often the skeleton S(C) is the strictification but not always

► In general the strictification is an endofunctor category

Thank you for your attention!

I hope that was of some help.