What are...monoidal categories?

Or: Monoids categorified

Filling in the questions mark

What we do not want!

Plan - Anno America

Group-like structures							
	Totalityα	Associativity	Identity	Invertibility	Commutativity		
Semigroupoid	Unneeded	Required	Unneeded	Unneeded	Unneeded		
Small category	Unneeded	Required	Required	Unneeded	Unneeded		
Groupoid	Unneeded	Required	Required	Required	Unneeded		
Magma	Required	Unneeded	Unneeded	Unneeded	Unneeded		
Quasigroup	Required	Unneeded	Unneeded	Required	Unneeded		
Unital magma	Required	Unneeded	Required	Unneeded	Unneeded		
Semigroup	Required	Required	Unneeded	Unneeded	Unneeded		
Loop	Required	Unneeded	Required	Required	Unneeded		
Inverse semigroup	Required	Required	Unneeded	Required	Unneeded		
Monoid	Required	Required	Required	Unneeded	Unneeded		
Commutative monoid	Required	Required	Required	Unneeded	Required		
Group	Required	Required	Required	Required	Unneeded		
Abelian group	Required	Required	Required	Required	Required		

- ▶ Monoids also appear *e.g.* via monads in categories
- ▶ Monads are not categorifications of monoids; just "similar in nature"
- ► A categorification should have two operations

Monoids

A monoid (M, \cdot) consists of

- ► A set M
- A multiplication $\cdot: M \times M \to M$ (write $ab = a \cdot b$)

▶ A unit $1 \in M$

such that

- is associative a(bc) = (ab)c
- is unital 1a = a = a1

A monoidal category $(\mathcal{C},\otimes,\mathbb{1},lpha,\lambda,
ho)$ consists of

- ► A category C
- A bifunctor \otimes : $C \times C \rightarrow C$ (write $XY = X \otimes Y$)
- ▶ A unit object $1 \in C$
- ► Natural isomorphisms $\alpha_{X,Y,Z}$: $X(YZ) \rightarrow (XY)Z$, λ_X : $\mathbb{1}X \rightarrow X$, ρ_X : $X\mathbb{1} \rightarrow X$ such that

(b) the riangle equality holds, *i.e.* we have commuting diagrams

Some examples

Name	Objects	Arrows	\otimes
SET	Sets	Maps	×
CAT	Categories	Functors	×
1COB	0-manifolds	1-manifolds	See below
nCOB	(n-1)-manifolds	n-manifolds	Similarly as below
⊮VECT	\mathbb{K} -vector spaces	${\mathbb K}$ -linear map	\otimes
⊮VECT	\mathbb{K} -vector spaces	${\mathbb K}$ -linear map	\oplus

Most diagrammatic categories are monoidal via juxtaposition :

Thank you for your attention!

I hope that was of some help.