What is...the duality principle?

Or: Flipping arrows

Transposing matrices

- In $\mathbb{K} f d V E C$ duality is taking the dual vector space
- Duality on objects does not change the object $\left(\mathbb{K}^{n}\right)^{*} \cong \mathbb{K}^{n}$ Fix
- Duality transposed matrices and reverses their direction Flip

Flipping diagrams

- In 1COB duality is taking a mirror along $y=0$
- Duality on objects does not change the object $n^{*}=n$ Fix
- Duality flips diagrams and reverses their direction

Flip

Live dual, laud evil

Statements have dual/co statements, e.g.:

- $P_{C}(X) \forall Y$ in $C \exists!f: X \rightarrow Y$ in C
- $P_{C o p}(X) \forall Y$ in $C^{o p} \exists!f: X \rightarrow Y$ in $C^{o p}$
- $P_{C}^{o p}(X) \forall Y$ in $C \exists!f: X \leftarrow Y$ in C

For completeness: A formal definition

The opposite category $C^{o p}$ of C has:
(a) The same same objects
(b) An opposite morphism $f^{\circ p}: Y \rightarrow X$ for each $f: X \rightarrow Y$ in C
(c) Composition $f^{o p} g^{o p}=(g f)^{o p}$

- Duality Principle

Property P holds \forall categories \Leftrightarrow property $P^{\circ P}$ holds \forall categories

$\left(C^{o p}\right)^{o p}=C$, and $P_{C}^{o p}$ holds if and only if $P_{C o p}$ holds

- In general, $C \neq C^{o p}$ and $P_{C} \neq P_{C}^{o p}$ but categories and properties can be self-dual, e.g.:
- $\mathbb{K} f d V E C$ and 1 COB are self-dual
- "Being an identity arrow" is self-dual

Dual concepts

(a) $P_{C}(f) \exists g: Y \rightarrow X$ with $X \xrightarrow{f} Y \xrightarrow{g} X=i d_{X}$
(b) $P_{C}^{o p}(f) \exists g: Y \leftarrow X$ with $X \stackrel{f}{\leftarrow} Y \stackrel{g}{\leftarrow} X=i d_{X}$

- (a) holds in SET if and only if f is injective (or $f=i d_{\emptyset}$ for $X=\emptyset$)
- (b) holds in SET if and only if f is surjective

Thank you for your attention!

I hope that was of some help.

