What is...the duality principle?

Or: Flipping arrows

Transposing matrices

- \blacktriangleright In $\mathbb{K}\mathsf{fdVEC}$ duality is taking the dual vector space
- ▶ Duality on objects does not change the object $(\mathbb{K}^n)^* \cong \mathbb{K}^n$ Fix
- ► Duality transposed matrices and reverses their direction Flip

Flipping diagrams

- In 1COB duality is taking a mirror along y = 0
- Duality on objects does not change the object $n^* = n$ Fix
- ► Duality flips diagrams and reverses their direction Flip

- $P_{C}^{op}(X) \quad \forall \text{ Y in } C \exists ! f : X \leftarrow Y \text{ in } C$
- ▶ $P_{C^{op}}(X)$ \forall Y in C^{op} \exists ! $f: X \to Y$ in C^{op}
- $\blacktriangleright P_C(X) \forall Y \text{ in } C \exists ! f: X \to Y \text{ in } C$

Statements have dual/co statements, e.g.:

The opposite category C^{op} of C has:

- (a) The same same objects
- (b) An opposite morphism $f^{op}: Y \to X$ for each $f: X \to Y$ in C
- (c) Composition $f^{op}g^{op} = (gf)^{op}$
 - ► Duality Principle

Property *P* holds \forall categories \Leftrightarrow property *P*^{op} holds \forall categories

 $(C^{op})^{op} = C$, and P_C^{op} holds if and only if $P_{C^{op}}$ holds

- ▶ In general, $C \not\cong C^{op}$ and $P_C \neq P_C^{op}$ but categories and properties can be self-dual, *e.g.*:
 - KfdVEC and 1COB are self-dual
 - "Being an identity arrow" is self-dual

Dual concepts

(a)
$$P_C(f) \exists g \colon Y \to X \text{ with } X \xrightarrow{f} Y \xrightarrow{g} X = id_X$$

(b)
$$P_C^{op}(f) \exists g: Y \leftarrow X \text{ with } X \xleftarrow{f} Y \xleftarrow{g} X = id_X$$

▶ (a) holds in SET if and only if f is injective (or $f = id_{\emptyset}$ for $X = \emptyset$)

▶ (b) holds in SET if and only if *f* is surjective

Thank you for your attention!

I hope that was of some help.