What are...Kan extensions?

Or: Recover information; kind of...

Databases

$$
C=\text { People1 } \xrightarrow{\text { dating }} \text { People2 }, \quad D=\text { People1 }
$$

$$
G: D \rightarrow C, G(\text { People } 1)=\text { People } 1
$$

	People1			$\begin{gathered} \text { People2 } \\ \hline \text { Eve } \end{gathered}$
	Adam	Adam	Fabio	Fabio
$F: C \rightarrow$ SET \rightarrow	Babhru	Babhru	Jun	Gwenyth
	Claus	Claus	Fabio	Hamza
	Deepti	Deepti	Eve	Inez
				Jun

$D \rightarrow$ SET $n \rightarrow$	People1
	Adam
	Babhru
	Claus
	Deepti

- Functors $C \rightarrow$ SET and $D \rightarrow$ SET are like a database
- _ $\circ G:[C$, SET $] \rightarrow[D$, SET] forgets all about dating Easy

Left is generous

$$
\begin{aligned}
& C=\text { People1 } \xrightarrow{\text { dating }} \text { People2 }, \quad D=\text { People1 } \\
& G: D \rightarrow C, G(\text { People } 1)=\text { People } 1
\end{aligned}
$$

- Recovering lost data can not work without cost Hard
- The left Kan extension $\operatorname{Lan}_{G} F$ tries to recover the data generously

Right is conservative

$$
\begin{aligned}
& C=\text { People1 } \xrightarrow{\text { dating }} \text { People2 }, \quad D=\text { People1 } \\
& G: D \rightarrow C, G(\text { People } 1)=\text { People } 1
\end{aligned}
$$

- Recovering lost data can not work without cost Hard
- The right Kan extension $\operatorname{Ran}_{G} F$ tries to recover the data conservatively

For completeness: A formal definition

A left Kan extension of $F: D \rightarrow E$ along $G: D \rightarrow C$ is given by a functor $\operatorname{Lan}_{G}: C \rightarrow E$ and a nat trafo $\epsilon: F \Rightarrow\left(\operatorname{Lan}_{G} F\right) G$, and the universal diagram

A right Kan extension of $F: D \rightarrow E$ along $G: D \rightarrow C$ is given by a functor $\operatorname{Ran}_{G}: C \rightarrow E$ and a nat trafo $\eta:\left(\operatorname{Ran}_{G} F\right) G \Rightarrow F$, and the universal diagram

- These might not exists
- If they exist, then they are unique up to unique isomorphism

Kan extensions everywhere
X. Kan Extensions 233

1. Adjoints and Limits 233
2. Weak Universality 235
3. The Kan Extension 236
4. Kan Extensions as Coends 240
5. Pointwise Kan Extensions 243
6. Density 245
All Concepts Are Kan Extensions 248

- The limit of $F: D \rightarrow E$ is $\operatorname{Ran}_{G} F(\bullet)$ for $G: D \rightarrow \bullet$
- The colimit of $F: D \rightarrow E$ is $\operatorname{Lan}_{G} F(\bullet)$ for $G: D \rightarrow \bullet$
- $\operatorname{Ran}_{G} i d_{D}$ is the left adjoint of $G: D \rightarrow C$
- $\operatorname{Lan}_{G} i d_{D}$ is the right adjoint of $G: D \rightarrow C$

Thank you for your attention!

I hope that was of some help.

