What are...Kan extensions?

Or: Recover information; kind of...

Databases

	C = People	e1 <u>dating</u>	> People2	, D =	People1	
	($G: D \to C, G(P)$	eople1) =	People1		1
: C	$\mathcal{C} \to SET \longleftrightarrow$	People1 Adam Babhru Claus Deepti	Adam Babhru Claus Deepti	Fabio Jun Fabio Eve	Peop Ev Fab Gwen Ham Ine Ju	e io lyth liza z
		e <u>1</u> n ru s ti				

• Functors $C \rightarrow SET$ and $D \rightarrow SET$ are like a database

F

▶ $_\circ G : [C, SET] \rightarrow [D, SET]$ forgets all about dating Easy

Left is generous

	C = People1	\xrightarrow{dating}	People2,	D = People	1
	<i>G</i> :	D ightarrow C, G(Pec	ple1) = P	eople1	
		People1			People2
		Adam	Adam	Person1	Person1
Lan _G F:	$C \to SET \leftrightsquigarrow$	Babhru	Babhru	Person2	Person2
		Claus	Claus	Person3	Person3
		Deepti	Deepti	Person4	Person4
		$F: D \to SET \Leftrightarrow$	People Adan → Babhr Claus Deept	n ru 5	

▶ Recovering lost data can not work without cost Hard

• The left Kan extension Lan_GF tries to recover the data generously

Right is conservative

	C = People1	\xrightarrow{dating}	People2 ,	D = Pe	ople1
	<i>G</i> :	D ightarrow C, G(Pec)			
Ran _G F :	$C \rightarrow SET \iff$	People1 Adam Babhru Claus Deepti	Adam Babhru Claus Deepti	Person1 Person1 Person1 Person1	People2 Person1
		$F: D \to SET \Leftrightarrow$	People Adan ↔ Babhr Claus Deept	1 7U 5	

► Recovering lost data can not work without cost Hard

▶ The right Kan extension Ran_GF tries to recover the data conservatively

For completeness: A formal definition

A left Kan extension of $F: D \to E$ along $G: D \to C$ is given by a functor $Lan_G: C \to E$ and a nat trafo $\epsilon: F \Rightarrow (Lan_GF)G$, and the universal diagram

A right Kan extension of $F: D \to E$ along $G: D \to C$ is given by a functor $Ran_G: C \to E$ and a nat trafo $\eta: (Ran_GF)G \Rightarrow F$, and the universal diagram

- These might not exists
- ▶ If they exist, then they are unique up to unique isomorphism

X.	Kan Extensions		•	•	•	•	•	•	•	•	•	•	•	•	•	233
	1. Adjoints and Limits										•	•				233
	2. Weak Universality															235
	3. The Kan Extension															236
	4. Kan Extensions as Coends															240
	5. Pointwise Kan Extensions															243
	6. Density															245
	7. All Concepts Are Kan Extensions].														248
	-															

• The limit of
$$F: D \to E$$
 is $Ran_G F(\bullet)$ for $G: D \to \bullet$

▶ The colimit of
$$F: D \to E$$
 is $Lan_GF(\bullet)$ for $G: D \to \bullet$

▶ Ran_Gid_D is the left adjoint of $G: D \to C$

• Lan_Gid_D is the right adjoint of $G: D \to C$

Thank you for your attention!

I hope that was of some help.