What is...Beck's monadicity theorem?

Or: Categories via actions

The (Free, Forget) adjunction again

- $T = Forget \circ Free$ gives a monad on SET
- ▶ $T(A) \cong \mathbb{K}{A}$ (formal \mathbb{K} -linear combinations)

Question What are *T*-algebras (a.k.a. *T*-modules)?

KVECT as an Eilenberg–Moore category?

- ▶ $(\lambda : \mathbb{K}{A} \to A + \text{asso.} + \text{id.})$ implies \mathbb{K} -linearity on A
- ▶ Being a $\mathbb{K}{_}$ -intertwiner implies \mathbb{K} -linearity of $f: A \to B$
- ▶ \mathbb{K} -vector spaces are $\mathbb{K}{A}$ -algebras?

$$\mathbb{K}\mathsf{VECT}\simeq\mathsf{SET}^{\mathbb{K}\{_\}}?$$

- ► $F^{\mathbb{K}\{_\}} \circ Forget$ is an equivalence of categories
- \blacktriangleright Thus, $\mathbb{K}\mathsf{VECT}$ is a module category of a monad
- ► Beck's monadicity theorem characterizes the situations where this works

- (F,G) adjunction between C, D, and $T = G \circ F$ the associated monad on C
- $\exists !$ comparison functor $K : D \to C^T$
- ▶ The adjunction is monadic if $K: D \xrightarrow{\simeq} C^T$

 $G: D \to C$ is monadic if \exists left adjoint $F: C \to D$ such that

$$K \colon D \xrightarrow{\simeq} C^{G \circ F}$$

Beck's monadicity theorem $G: D \rightarrow C$ is monadic if and only if

- (a) \exists left adjoint $F: C \rightarrow D$
- (b) (If G(f) is an isomorphism, then so is f) is satisfied
- (c) D has coequalizers of G-split parallel pairs, and G preserves these

G-split parallel pairs are those parallel arrows in D which G sends to arrows having a split coequalizer

Crude monadicity theorem

- (a) \exists left adjoint $F: C \rightarrow D$
- (b) (If G(f) is an isomorphism, then so is f) is satisfied
- (c) D has coequalizers and G preserves these

(a), (b) and (c) imply that $G: D \to C$ is monadic (Checks for the above)

Thank you for your attention!

I hope that was of some help.