What are...adjoint functors diagrammatically?

Or: Zigzag!

Two-dimensional algebra

► Functor calculus gets a 2d flavor via string diagrams

• Important Do not draw identity functors id_C , e.g.

$$F: C \to D, G: D \to C$$

$$\epsilon: FG \Rightarrow id_D \qquad \longleftrightarrow \qquad F \qquad G \qquad = \qquad F \qquad G$$

► Goal Rediscover adjoint functors using plane geometry only

▶ There are several compatibility conditions we need anyway , *e.g.*

► The zigzag relation is a genuine and crucial relation planar diagrams satisfy

► Use this to define certain functors

What do we need for the zigzag?

▶ We need functors ($F: C \rightarrow D, G: D \rightarrow C$) in opposite directions F G

• We need nat trafos $\epsilon \colon FG \Rightarrow id_D$ and $\iota \colon id_C \Rightarrow GF$

► We need the relations

Two functors $(F, G) = (F: C \rightarrow D, G: D \rightarrow C)$ for an adjoint pair if: There exists a counit $\epsilon: FG \Rightarrow id_D$

• There exists a unit $\iota: id_C \Rightarrow GF$

► They satisfy the zigzag relations :

In this case F is the left adjoint of G, and G is the right adjoint of F

- ► A functor might not have left/right adjoints
- ▶ If they exist, then they are unique up to unique isomorphism

The hom adjunction

▶ For (F, G) we have $\hom_D(FX, Y) \cong \hom_C(X, GY)$

How can we see this? Use the diagrams above!

Thank you for your attention!

I hope that was of some help.