What is...the adjoint functor theorem?

Or: Identities are free!

Adjoints preserve limits

► (*Free*, *Forget*) adjunction preserves (colimit, limits)

- ▶ This is true in general , *i.e.* adjoint functors are (co)continuous
 - Question What about the converse?

Testing (co)limits

- ► Does Inclusion:RING→RNG have adjoints? "Is adding units possible?"
- ▶ Inclusion(\mathbb{Z}) $\cong \mathbb{Z}$ is not initial No right adjoint exists
- ▶ Inclusion(0) \cong 0 is terminal Left adjoint? We can't tell

Enough data?

- With enough data given one can construct f^{-1} from f
- ▶ RING is complete and Inclusion:RING→RNG preserves all limits
- ▶ We should be able to construct the left adjoint from the given data !?
- f^{-1} /adjoints do not always exist Expect extra condition!

Given $G: C \rightarrow D$, assume that

- \blacktriangleright *C* is complete
- ► G is continuous
- ► The SSC holds, *i.e.* $\forall Y \in D \exists (f_i : Y \to G(X_i))_{i \in I}$ such that every $f : Y \to G(X)$ can be written as a composite (for some g_i):

Then G has a left adjoint

 \blacktriangleright To avoid confusion, having a left adjoint means G is a right adjoint

▶ The above can be restated as: $G: X \to Y$ with complete domain, then

(G has a left adjoint) \Leftrightarrow (G is continuous and satisfies SSC)

► There is a dual statement for the existence of right adjoints

Back to RGN

► Assume we would not know that adjoining identities works

- \blacktriangleright The adjoint functor theorem shows that Inclusion has a left adjoint F
- Define F(X) as "universal" way to adjoin an identity

Thank you for your attention!

I hope that was of some help.