What are...adjoint functors?

Or: Life is not invertible

Ceiling and floor

- The inclusion $\iota: \mathbb{Z} \rightarrow \mathbb{R}$ is not invertible and $\mathbb{Z} \not \not \mathbb{R}$
- There is no invertible way to assign an integer to a real number
- Ceiling and floor serve as approximations of inverses

Pseudo inverses

$$
F: C \rightleftarrows D: G
$$

an isomorphism

$$
\begin{aligned}
& F G=i d_{D} \\
& G F=i d_{C} \\
& \uparrow \\
& \text { equality }
\end{aligned}
$$

an equivalence

$$
F G \cong i d_{D}
$$

$$
G F \cong i d_{c}
$$

natural isomorphism
an adjunction

$$
F G \rightarrow i d_{0}
$$

$$
G F \leftarrow i d_{c}
$$

Equality $=$ is the "wrong" notion in category theory
Equivalence \cong is much better but still involves objects
Idea Weaken the condition \cong by ignoring objects

We only care about arrows!

$$
\begin{gathered}
F: C \rightleftarrows D: G \\
\operatorname{hom}_{D}(F x, y) \stackrel{\cong}{\not \operatorname{hom}_{c}(x, G y)}
\end{gathered}
$$

all morphisms $F X \rightarrow Y$ in $D \quad$ all morphisms $X \rightarrow G Y$ in C

Every matrix $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ has an adjoint $=$ transpose matrix $\hat{A}=A^{T}$ with

$$
\langle A x, y\rangle_{\mathbb{R}^{m}}=\left\langle x, A^{T} y\right\rangle_{\mathbb{R}^{n}}
$$

- That sound like what we want!

$$
\operatorname{hom}_{D}(F X, Y) \ni f \mapsto \hat{f} \in \operatorname{hom}_{C}(X, G Y) \operatorname{hom}_{D}(F X, Y) \ni \hat{g} \leftrightarrow g \in \operatorname{hom}_{C}(X, G Y)
$$

For completeness: A formal definition

Two functors $(F, G)=(F: C \rightarrow D, G: D \rightarrow C)$ for an adjoint pair if:

- There exists a nat trafo $\alpha: \operatorname{hom}_{D}\left(F_{-},{ }_{-}\right) \Rightarrow \operatorname{hom}_{C}\left({ }_{-}, G_{-}\right)$(part of the data)
- For all X, Y there are isomorphism

$$
\alpha_{X, Y}: \operatorname{hom}_{D}(F X, Y) \xrightarrow{\cong} \operatorname{hom}_{C}(X, G Y)
$$

In this case F is the left adjoint of G, and G is the right adjoint of F

- A functor might not have left/right adjoints
- If they exist, then they are unique up to unique isomorphism

The slogan is "Adjoint functors arise everywhere".

- Saunders Mac Lane, Categories for the Working Mathematician

Back to ceiling and floor

- Take \mathbb{R} with $x \rightarrow y$ if $x \leq y, \mathbb{Z} \subset \mathbb{R}, \iota: \mathbb{Z} \rightarrow \mathbb{R}$ inclusion
- Adjoint functors $\left(\left\lceil_{-}\right\rceil, \iota\right)$ and $\left(\iota,\left\lfloor_{-}\right\rfloor\right)$

$$
\lceil y\rceil \leq x \Leftrightarrow y \leq x \quad x \leq\lfloor y\rfloor \Leftrightarrow x \leq y \quad x \in \mathbb{Z}, y \in \mathbb{R}
$$

Thank you for your attention!

I hope that was of some help.

