What are...(commuting) diagrams?

Or: Graphs and paths

Diagrams in SET

- (1) Going right+down equals going right-down
- Going right+down does not equal going right-down
- ► We call (1) commutative
- ▶ We say that (2) does not commute

- (1) Going right+down equals going right-down
- Going right+down does not equal going right-down
- ► We call (1) commutative
- ▶ We say that (2) does not commute

Paths

- \blacktriangleright An abstract diagram is a directed graph J
- We can interpret J in any category C
- \blacktriangleright J commutes in C if all paths with the same start and end commute in C

A diagram \mathcal{D} of shape J in C is an association

 $\mathcal{D}\colon J\to C$

It commutes if all directed paths in $\mathcal{D}(J)$ with the same start and endpoints lead to the same result in C

▶ "association" is replaced by functor as soon as that concept is introduced

▶ The actual objects and morphisms in J are largely irrelevant

• J commutes $\Rightarrow \mathcal{D}(J)$ commutes, but it can happen that \notin

Commuting faces

▶ Very often it suffices to check that faces commute

Example f = jh follows from f = ig, g = kh and j = ik

Thank you for your attention!

I hope that was of some help.