What are...(commuting) diagrams?

Or: Graphs and paths

Diagrams in SET

- (1) Going right+down equals going right-down
- (2) Going right+down does not equal going right-down
- We call (1) commutative
- We say that (2) does not commute

Diagrams in 1COB

(1):

- (1) Going right+down equals going right-down
- (2) Going right+down does not equal going right-down
- We call (1) commutative
- We say that (2) does not commute

Paths

- An abstract diagram is a directed graph J
- We can interpret J in any category C
- J commutes in C if all paths with the same start and end commute in C

For completeness: A formal definition
A diagram \mathcal{D} of shape J in C is an association

$$
\mathcal{D}: J \rightarrow C
$$

It commutes if all directed paths in $\mathcal{D}(J)$ with the same start and endpoints lead to the same result in C

- One shape, many diagrams:

- "association" is replaced by functor as soon as that concept is introduced
- The actual objects and morphisms in J are largely irrelevant
- J commutes $\Rightarrow \mathcal{D}(J)$ commutes, but it can happen that ψ

Commuting faces

- Very often it suffices to check that faces commute
- Example $f=j h$ follows from $f=i g, g=k h$ and $j=i k$

Thank you for your attention!

I hope that was of some help.

